

Build Your Own ASP.NET Website
Using C# & VB.NET
(Chapters 1, 2, 3 and 4)

Thank you for downloading the sample chapters of Zak
Ruvalcaba’s book, Build Your Own ASP.NET Website Using C# &
VB.NET, published by SitePoint.

This excerpt includes the Summary of Contents, Information
about the Author, Editors and SitePoint, Table of Contents,
Preface, 4 chapters of the book and the index.

We hope you find this information useful in evaluating this book.

For more information, visit sitepoint.com

http://www.sitepoint.com/launch/eed6c1

Summary of Contents of this Excerpt
Preface ..xi
1. Introduction to .NET and ASP.NET 1
2. ASP.NET Basics... 31
3. VB.NET and C# Programming Basics 47
4. Web Forms and Web Controls ... 85
Index... 721

Summary of Additional Book Contents
5. Validation Controls ... 131
6. Database Design and Development 161
7. Structured Query Language... 197
8. ADO.NET .. 243
9. The DataGrid and DataList Controls 305
10. DataSets ... 363
11. Web Applications .. 421
12. Building an ASP.NET Shopping Cart............................... 451
13. Error Handling... 497
14. Security and User Authentication..................................... 531
15. Working with Files and Email... 559
16. Rich Controls and User Controls 597
17. XML Web Services .. 645
A. HTML Control Reference ... 683
B. Web Control Reference... 699
C. Validation Control Reference ... 715

Build Your Own ASP.NET
Website Using C# & VB.NET

by Zak Ruvalcaba

Build Your Own ASP.NET Website Using C# & VB.NET
by Zak Ruvalcaba

Copyright © 2004 SitePoint Pty. Ltd.

Expert Reviewer: Kevin YankEditor: Georgina Laidlaw
Technical Editor: Rich DeesonManaging Editor: Simon Mackie
Index Editor: Bill JohncocksCover Design: Julian Carroll

Printing History:
First Edition: April 2004

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0–9579218–6–1
Printed and bound in the United States of America

About The Author

Zak Ruvalcaba has been designing, developing and researching for the Web since 1995.
He holds a Bachelor’s Degree from San Diego State University and a Master of Science
in Instructional Technology from National University in San Diego.

In the course of his career, Zak has developed Web applications for such companies as
Gateway, HP, Toshiba, and IBM. More recently, he’s worked as a wireless software engineer
developing .NET solutions for Goldman Sachs, TV Guide, The Gartner Group, Microsoft
and Qualcomm. Currently, Zak holds a programming position with ADCS Inc. in San
Diego supporting internal .NET applications.

Previous books by Zak Ruvalcaba include The 10 Minute Guide to Dreamweaver 4 (Que
Publishing) and Dreamweaver MX Unleashed (Sams Publishing). He also lectures on various
technologies and tools including Dreamweaver and ASP.NET for the San Diego Community
College District.

About The Expert Reviewer

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint
on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps
best known for his book, Build Your Own Database Driven Website Using PHP & MySQL,
also from SitePoint.

Having graduated from McGill University in Montreal with a Bachelor of Computer En-
gineering, Kevin now lives in Melbourne, Australia. In his spare time he enjoys flying light
aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About The Technical Editor

Rich Deeson wrote his first programs at the age of 10 on his father’s work machine, a
380Z with 256k RAM. Since then, his career has taken him around Europe, and has
taught him the ins and outs of many languages, from C++ to Java, from QuickBasic (the
precursor to Visual Basic) to VB.NET, from Perl and CGI to JSP and ASP.NET. Currently,
he is lead JSP developer at ICTI in the UK, and most of his free time is taken up at Uni-
versity, having returned to study last year.

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content for Web
Professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://www.sitepoint.com/

For my wife Jessica.

ii

Table of Contents
Preface ... xi

Who Should Read This Book? .. xii
What’s Covered In This Book? ... xii
The Book’s Website .. xv

The Code Archive ... xv
Updates and Errata .. xvi

The SitePoint Forums .. xvi
The SitePoint Newsletters .. xvi
Your Feedback ... xvi
Acknowledgements ... xvii

1. Introduction to .NET and ASP.NET ... 1
What is .NET? ... 1
What is ASP.NET? .. 2
What Do I Need? .. 5
Installing the Required Software ... 5

Installing Internet Information Services (IIS) 6
Installing Internet Explorer .. 7
Installing the .NET Framework and SDK 8
Configuring IIS .. 9
Installing Microsoft Access ... 18
Installing SQL Server Desktop Engine (MSDE) 19
Installing and Configuring Web Data Administrator 22

Your First ASP.NET Page ... 23
The ASP.NET Support Site .. 29
Summary ... 29

2. ASP.NET Basics .. 31
ASP.NET Page Structure .. 32

Directives .. 33
Code Declaration Blocks .. 34
Code Render Blocks ... 36
ASP.NET Server Controls .. 37
Server-Side Comments ... 38
Server-Side Include Directives .. 39
Literal Text and HTML Tags .. 39

View State ... 40
Working With Directives ... 43
ASP.NET Languages .. 44

VB.NET .. 44

C# ... 45
 Summary .. 45

3. VB.NET and C# Programming Basics ... 47
Programming Basics ... 47

Control Events and Subroutines ... 48
Page Events ... 52
Variables and Variable Declaration ... 54
Arrays .. 57
Functions ... 59
Operators ... 63
Conditional Logic .. 65
Loops .. 66

Understanding Namespaces ... 70
Object Oriented Programming Concepts .. 72

Objects .. 73
Properties .. 74
Methods .. 75
Classes ... 76
Scope ... 78
Events .. 78
Understanding Inheritance ... 79

Separating Code From Content With Code-Behind 79
Summary ... 84

4. Web Forms and Web Controls .. 85
Working with HTML Controls ... 86

HtmlAnchor .. 87
HtmlButton ... 88
HtmlForm ... 88
HtmlImage .. 89
HtmlGenericControl .. 89
HtmlInputButton .. 90
HtmlInputCheckBox .. 90
HtmlInputFile .. 91
HtmlInputHidden .. 91
HtmlInputImage .. 91
HtmlInputRadioButton .. 92
HtmlInputText .. 92
HtmlSelect ... 92
HtmlTable, HtmlTableRow and HtmlTableCell 93
HtmlTextArea .. 94

Order the print version of this book to get all 700+ pages!iv

Build Your Own ASP.NET Website Using C# & VB.NET

http://www.sitepoint.com/launch/eed6c1

Processing a Simple Form ... 94
Introduction to Web Forms .. 97
Introduction to Web Controls .. 98

Basic Web Controls ... 100
Handling Page Navigation .. 107

Using The HyperLink Control .. 108
Navigation Objects And Their Methods 108

Postback .. 112
Formatting Controls with CSS ... 114

Types of Styles and Style Sheets .. 115
Style Properties .. 117
The CssClass Property ... 118

A Navigation Menu and Web Form for the Intranet Application 119
Introducing the Dorknozzle Intranet Application 119
Building the Navigation Menu ... 120
Create the Corporate Style Sheet ... 124
Design the Web Form for the Helpdesk Application 127

Summary ... 129

5. Validation Controls .. 131
Client-Side vs. Server-Side Validation ... 131
Configuring Client-Side Validation ... 133
Using Validation Controls .. 135

RequiredFieldValidator .. 135
CompareValidator .. 139
RangeValidator .. 145
ValidationSummary ... 149
RegularExpressionValidator .. 153
CustomValidator ... 157

Summary ... 159

6. Database Design and Development .. 161
An Introduction to Databases ... 161
The Database Management System .. 163

Creating the Database for the Intranet Application 164
Designing Tables for the Intranet Application 166
Columns and Data Types ... 169
Inserting Rows ... 178

Beyond the Basics .. 182
Keys .. 182
Relationship Management .. 185
Stored Procedures .. 194

vOrder the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

Queries .. 195
Security ... 195

Summary ... 196

7. Structured Query Language .. 197
Basic SQL .. 198

Working with the Query Editor in Access 199
Working with the Query Editor in Web Data Administrator 203
The SELECT Query ... 204
The INSERT Statement ... 214
The UPDATE Statement ... 217
The DELETE Statement .. 220

Other Clauses .. 220
The ORDER BY Clause .. 220
The GROUP BY and HAVING Clauses 222

Expressions .. 222
Operators ... 224
Functions ... 226

Date and Time Functions ... 227
Aggregate Functions ... 229
Arithmetic Functions ... 233
String Functions .. 235

Joins .. 236
INNER JOIN ... 236
OUTER JOIN .. 238

Subqueries ... 240
The IN Operator .. 240
The Embedded SELECT Statement .. 241

Summary ... 241

8. ADO.NET ... 243
An Introduction to ADO.NET .. 244
Performing Common Database Queries .. 253

Responding to User Interaction .. 254
Using Parameters with Queries ... 257
Using the Repeater Control .. 260
Data Binding ... 272

Inserting Records ... 275
Updating Records .. 279
Deleting Records .. 288
Handling Updates with Postback .. 292
Working with Transactions .. 295

Order the print version of this book to get all 700+ pages!vi

Build Your Own ASP.NET Website Using C# & VB.NET

http://www.sitepoint.com/launch/eed6c1

Improving Performance with Stored Procedures 298
Summary ... 303

9. The DataGrid and DataList Controls ... 305
Working with DataGrids .. 306

Customizing DataGrids .. 311
Creating a Master/Detail Form with the HyperLinkColumn 316
Event Bubbling .. 323
Working with the EditCommandColumn 325
Using Templates .. 333
Adding ButtonColumns to Delete Rows within a DataGrid 336

Using the DataList Control .. 339
Customizing DataLists Using Styles ... 344
Editing Items within a DataList .. 346
Creating a Navigation Menu using DataLists 354

Summary ... 361

10. DataSets .. 363
Understanding DataSets .. 364

DataSet Elements .. 367
Binding DataSets to Controls ... 368
Creating a DataGrid that Pages .. 376

Understanding DataTables ... 379
Creating DataTables Programmatically 380
Creating DataColumns Programmatically 385
Creating DataRows Programmatically 387
Setting DataTable Properties Programmatically 390
Setting DataColumn Properties Programmatically 393
Adding DataColumn Values ... 398
Defining DataRelations Between DataTables 402

 Understanding DataViews ... 407
Filtering DataViews ... 408
Sorting Columns in a DataGrid .. 410

Updating a Database from a Modified DataSet 414
Summary ... 420

11. Web Applications ... 421
Overview of ASP.NET Applications .. 422
Using Application State ... 423

Working With the Global.asax File ... 428
Using the Web.config File .. 433
Caching ASP.NET Applications .. 437

Using Page Output Caching ... 438

viiOrder the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

Using Page Data Caching ... 442
Working with User Sessions ... 446
Summary ... 449

12. Building an ASP.NET Shopping Cart .. 451
What Is a Shopping Cart? .. 451
The Intranet Shopping Cart ... 452

Defining the Cart Framework ... 455
Building the Employee Store Interface 459
Showing Items and Creating the Cart Structure 465
Adding to the Cart ... 470
Keeping the Order Total .. 476
Modifying Cart Quantities ... 478
Removing Items from the Cart ... 484

Processing Orders Using PayPal .. 486
Creating a PayPal Account ... 486
Integrating the Shopping Cart with your PayPal Account 487

Summary ... 496

13. Error Handling ... 497
Introduction to Error Handling .. 497

Types of Errors .. 498
Viewing Error Information ... 503
Handling Errors ... 506

Using the .NET Debugger .. 522
Attaching a Process to the Debugger ... 523
Creating Breakpoints and Stepping Through Code 525
Creating Watches .. 529

Summary ... 530

14. Security and User Authentication ... 531
Securing ASP.NET Applications ... 531
Working with Forms Authentication .. 532

Configuring Forms Authentication ... 537
Configuring Forms Authorization ... 538
Web.config File Authentication .. 540
Database Authentication .. 542
Custom Error Messages .. 548
Logging Users Out ... 550

Building Your Own Authentication Ticket .. 551
Summary ... 557

Order the print version of this book to get all 700+ pages!viii

Build Your Own ASP.NET Website Using C# & VB.NET

http://www.sitepoint.com/launch/eed6c1

15. Working with Files and Email ... 559
Writing to Text Files .. 560
Reading from Text Files ... 565
Accessing Directories and Directory Information 568
Working with Directory and File Paths ... 573
Uploading Files .. 576
Sending Email in ASP.NET .. 579

Configuring IIS to Send Email .. 580
Creating the Company Newsletter Page 582

Serialization ... 588
Summary ... 595

16. Rich Controls and User Controls ... 597
Introduction to Rich Controls .. 597

An Introduction to XML and XSLT .. 598
Simplifying it All with the Xml Control 603
The AdRotator Control .. 609
The Calendar Control .. 611

Introduction to User Controls .. 625
Globalizing Content with User Controls 626
Exposing Properties and Methods in User Controls 630

Loading User Controls Programmatically .. 636
Summary ... 643

17. XML Web Services ... 645
Introduction to XML Web Services .. 646

Understanding Web Service Standards 649
A Simple Calculator Web Service ... 653
Consuming the Calculator Web Service 658

Using WSDL to Consume Third-Party Web Services 663
Finding the Service and Creating the Assembly 664
Registering to Use the Google Search Service 665
Consuming the Google Search Service 667

Web Service and Database Interaction ... 676
Consuming the Company Events Service 679

Summary ... 681

A. HTML Control Reference ... 683
HtmlAnchor Control .. 683
HtmlButton Control .. 684
HtmlForm Control ... 685
HtmlGeneric Control ... 685
HtmlImage Control .. 686

ixOrder the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

HtmlInputButton Control .. 687
HtmlInputCheckBox Control ... 688
HtmlInputFile Control ... 688
HtmlInputHidden Control ... 689
HtmlInputImage Control ... 690
HtmlInputRadioButton Control ... 691
HtmlInputText Control ... 692
HtmlSelect Control .. 693
HtmlTable Control .. 694
HtmlTableCell Control .. 695
HtmlTableRow Control .. 696
HtmlTextArea Control ... 697

B. Web Control Reference .. 699
AdRotator Control ... 701
Button Control .. 701
Calendar Control ... 702
CheckBox Control .. 704
CheckBoxList Control .. 704
DropDownList Control .. 705
HyperLink Control .. 706
Image Control .. 707
ImageButton Control ... 707
Label Control ... 708
LinkButton Control ... 708
ListBox Control ... 709
Literal Control ... 710
Panel Control ... 710
PlaceHolder Control .. 710
RadioButton Control ... 710
RadioButtonList Control .. 711
TextBox Control .. 712
Xml Control ... 713

C. Validation Control Reference ... 715
The RequiredFieldValidator Control ... 715
The CompareValidator Control .. 716
The RangeValidator Control .. 717
The ValidationSummary Control ... 718
The RegularExpressionValidator Control .. 719
The CustomValidator Control .. 719

Index ... 721

Order the print version of this book to get all 700+ pages!x

Build Your Own ASP.NET Website Using C# & VB.NET

http://www.sitepoint.com/launch/eed6c1

Preface
Here I am, seven years after the inception of ASP, still using a technology that I
initially only glanced over as I searched for a server-side alternative to ColdFusion.

It was 1997, a big year for me. I graduated college, landed a job as a creative
director, and decided it was time to build on my experience with HTML and
JavaScript. I didn’t consider myself a programmer—my true passions lay in
design—but within months of starting my new job, I was developing the firm’s
Website, Intranet, and company portal. The dynamic portions of these projects
were developed using CGI written in Perl. As you might expect, I was lost! After
looking around, I decided ColdFusion was my best bet—the language seemed to
parallel closely the constructs of HTML, and I found it easy to pick up. However,
I soon discovered that ColdFusion’s limitations in terms of accessing a server’s
file system, and error handling, posed problems.

ASP and VBScript seemed like the best alternative. I’d taken basic programming
classes in college, and I guess they helped, because these two technologies came
easily to me. Shortly thereafter, I went back to school and got into Visual Basic,
COM, DCOM, and more. A whole new world was opening up to me through
simplicity offered by ASP.

Seven years, and countless Windows, Web, and wireless applications later, I still
swear by the next generation of a technology that I’ve always considered superior
to the major alternatives. ASP.NET represents a new and efficient way of creating
Web applications using the programming language with which you feel most
comfortable. Though it can take some time to learn, ASP.NET is simple to use.
Whether you want to create Web Forms complete with Web and validation
controls, or you aim to build a feature-rich shopping cart using DataTables, all
the tools you’ll need to get up and running are immediately available, easy to
install, and require very little initial configuration.

My guess is that if you’re reading this book, you’re in the same boat I was: a
longtime designer dabbling with HTML. Or maybe you’re an advanced HTML
and JavaScript developer looking to take the next step. Perhaps you’re a seasoned
PHP, JSP, or ColdFusion veteran who wants to know what all the fuss is about.
Whatever the case, I’m sure you’ll find this book helpful in showing you how
simple and feature-rich ASP.NET really is.

Who Should Read This Book?
This book is aimed at beginner, intermediate, and advanced Web designers
looking to make the leap into server-side programming with ASP.NET. You’ll be
expected to feel comfortable with HTML, as very little explanation is provided
here.

By the end of this book, you should have a firm grasp on what it takes to down-
load and install ASP.NET and the .NET Framework, configure and start your
Web server, create and work with basic ASP.NET pages, install and run either
Access or MSDE, create database tables, work with advanced, dynamic ASP.NET
pages that query, insert, update, and delete information within a database.

All examples provided in the book are written in both Visual Basic .NET and
C#, the two most popular languages for writing ASP.NET Websites. They start
at beginners’ level and work up. As such, no prior knowledge of the two languages
is required in order to read, learn from, and apply the knowledge provided in this
book. Experience with other programming or scripting languages (such as JavaS-
cript) will certainly grease the wheels, however, and will enable you to grasp the
fundamental programming concepts more quickly.

What’s Covered In This Book?
This book is comprised of the following seventeen chapters. Read them from
beginning to end to gain a complete understanding of the subject, or skip around
if you feel you need a refresher on a particular topic.

Chapter 1: Introduction to .NET and ASP.NET
Before you can start building your database-driven Web presence, you must
ensure you have the right tools for the job. In this first chapter, I’ll tell you
how to find, download, and configure the .NET Framework. I’ll explain where
the Web server is located and how to install and configure it. Next, we’ll walk
through the installation of two Microsoft database solutions: Access and
MSDE. Finally, we’ll create a simple ASP.NET page to make sure that
everything’s running and properly configured.

Chapter 2: ASP.NET Basics
In this chapter, you’ll create your first useful ASP.NET page. We’ll cover all
of the parts that make up a typical ASP.NET page, including directives,
controls, and code. We’ll then walk through the process of deployment, fo-

Order the print version of this book to get all 700+ pages!xii

Preface

http://www.sitepoint.com/launch/eed6c1

cusing specifically on allowing the user to view the processing of a simple
ASP.NET page through the Web browser.

Chapter 3: VB.NET and C# Programming Basics
In this chapter, we’ll look at two of the programming languages used to create
ASP.NET pages: VB.NET and C#. You’ll learn about the syntax of the two
languages as we explore the concepts of variables, data types, conditionals,
loops, arrays, functions, and more. Finally, we’ll see how the two languages
accommodate Object Oriented Programming principles by allowing you to
work with classes, methods, properties, inheritance, and more.

Chapter 4: Web Forms and Web Controls
ASP.NET is bundled with hundreds of controls that you can use within your
applications, including HTML controls, Web controls, and more. This chapter
will introduce you to the wonderful world of Web controls and how Microsoft
basically reinvented HTML forms.

Chapter 5: Validation Controls
This chapter introduces validation controls. With validation controls, Mi-
crosoft basically eliminated the heartache of fumbling through and configuring
tired, reused client-side validation scripts.

Chapter 6: Database Design and Development
Undoubtedly one of the most important chapters in the book, Chapter 6 will
help you prepare to work with databases in ASP.NET. We’ll cover the essen-
tials you’ll need in order to create a database using either Access or MSDE.
In this chapter, we’ll begin to build the database for our project.

Chapter 7: Structured Query Language
This chapter introduces the language we’ll use to facilitate communications
between the database and the Web application: Structured Query Language,
or SQL. After a gentle introduction to the basic concepts of SQL, we’ll move
on to more advanced topics such as expressions, conditions, and joins.

Chapter 8: ADO.NET
The next logical step in database driven Web applications involves ADO.NET.
This chapter explores the essentials of the technology, and will have you
reading data in a database directly from your Web applications in just a few
short steps. We’ll then help you begin the transition from working with
static applications to database-driven ones.

xiiiOrder the print version of this book to get all 700+ pages!

What’s Covered In This Book?

http://www.sitepoint.com/launch/eed6c1

Chapter 9: The DataGrid and DataList Controls
Taking ADO.NET further, this chapter shows you how to utilize the DataGrid
and DataList controls provided within the .NET Framework. DataGrid and
DataList play a crucial role in the simplicity of presenting information with
ASP.NET. In learning how to present database data within your applications
in a cleaner and more legible format, you’ll gain an understanding of the
concept of data binding at a much higher level.

Chapter 10: DataSets
One of the most challenging concepts to grasp when transitioning from ASP
to ASP.NET is that of disconnected data. In this chapter, you’ll learn how
to use DataSets to create virtual database tables within your Web applications.
You’ll also learn how to work with DataTables, and how to filter and sort
information within DataSets and DataTables using DataViews.

Chapter 11: Web Applications
Chapter 11 explores the features of a Web application. We’ll discuss the
many parts of the Web.config file in depth, and understand how to work
with the Global.asax file, application state, and session state. Finally, we’ll
look at the ways in which caching can improve the performance of your Web
applications.

Chapter 12: Building an ASP.NET Shopping Cart
In this chapter, we’ll create an ASP.NET shopping cart. Using the topics
we’ve explored in previous chapters, including DataTables and session state,
we’ll walk through the process of building a purely memory-resident shopping
cart for our project.

Chapter 13: Error Handling
Learning to handle gracefully unforeseen errors within your Web applications
is the topic of this chapter. Initially, we’ll discuss basic page and code tech-
niques you can use to handle errors. We’ll then talk about the debugger that’s
included with the .NET Framework SDK and understand how to leverage it
by setting breakpoints, reading the autos and locals window, and setting
watches. Finally, we’ll discuss how you can take advantage of the Event
Viewer to write errors as they occur within your applications.

Chapter 14: Security and User Authentication
This chapter will introduce you to securing your Web applications with
ASP.NET. Here, we’ll discuss the various security models available, including
IIS, Forms, Windows, and Passport, and discusses the roles the Web.config
and XML files can play.

Order the print version of this book to get all 700+ pages!xiv

Preface

http://www.sitepoint.com/launch/eed6c1

Chapter 15: Working with Files and Email
In this chapter, we’ll look at accessing your server’s file system, including
drives, files, and the network. The chapter will then show you how to work
with file streams to create text files, write to text files, and read from text
files on your Web server. Finally, you’ll learn how to send emails using
ASP.NET.

Chapter 16: Rich Controls and User Controls
Chapter 16 explores ASP.NET’s rich controls. You’ll learn how to create an
interactive meeting scheduler using the Calendar control, sessions, and seri-
alization. You’ll also learn how to format XML with XSLT utilizing the Xml
control. Lastly, we’ll look at randomizing banner advertisements on your site
using the AdRotator control.

Chapter 17: XML Web Services
The newest buzzword in the development community is “Web Services,”
and this chapter hopes to shed some light on the topic. We first define Web
Services before moving on to explain how they’re used, where they can be
found, and what WSDL and UDDI are. In this chapter, you’ll create a couple
of different Web Services from scratch, including one that queries your
database to present information within a Web application. You’ll also learn
how to build a search application using the Google Search Web Service.

The Book’s Website
Located at http://www.sitepoint.com/books/aspnet1/, the Website that supports
this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in the book.

The archive contains one folder for each chapter of the book. Each of these folders
in turn contains CS and VB subfolders, which contain the C# and VB.NET versions
of all the examples for that chapter, respectively. In later chapters, these files are
further divided into two more subfolders: Lessons for standalone examples
presented for a single chapter, and Project for files associated with the
Dorknozzle Intranet Application, a larger-scale project that we’ll work on
throughout the book, which I’ll introduce in Chapter 4.

xvOrder the print version of this book to get all 700+ pages!

The Book’s Website

http://www.sitepoint.com/books/aspnet1/
http://www.sitepoint.com/launch/eed6c1

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at
least one or two mistakes before the end of this one. The Errata page on the
book’s Website will always have the latest information about known typograph-
ical and code errors, and necessary updates for new releases of ASP.NET and the
various Web standards that apply.

The SitePoint Forums
If you’d like to communicate with me or anyone else on the SitePoint publishing
team about this book, you should join SitePoint’s online community[2]. The
.NET forum[3] in particular can offer an abundance of information above and
beyond the solutions in this book.

In fact, you should join that community even if you don’t want to talk to us, be-
cause there are a lot of fun and experienced Web designers and developers hanging
out there. It’s a good way to learn new stuff, get questions answered in a hurry,
and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters in-
cluding The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read
about the latest news, product releases, trends, tips, and techniques for all aspects
of Web development. If nothing else, you’ll get useful ASP.NET articles and tips,
but if you’re interested in learning other technologies, you’ll find them especially
valuable. Sign up to one or more SitePoint newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or if you wish to contact us
for any other reason, the best place to write is <books@sitepoint.com>. We have
a well-manned email support system set up to track your inquiries, and if our
support staff members are unable to answer your question, they will send it

[2] http://www.sitepoint.com/forums/
[3] http://www.sitepoint.com/forums/forumdisplay.php?f=141

Order the print version of this book to get all 700+ pages!xvi

Preface

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=141
http://www.sitepoint.com/forums/forumdisplay.php?f=141
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/eed6c1

straight to me. Suggestions for improvements as well as notices of any mistakes
you may find are especially welcome.

Acknowledgements
First and foremost, I’d like to thank the SitePoint team for doing such a great
job in making this book possible, for being understanding as deadlines inevitably
slipped past, and for the team’s personal touch, which made it a pleasure to work
on this project.

Particular thanks go to Simon Mackie, whose valuable insight and close cooper-
ation throughout the process has tied up many loose ends and helped make this
book both readable and accessible. Thanks again Simon for allowing me to write
this book—I appreciate the patience and dedication that you’ve shown.

Finally, returning home, I’d like to thank my wife Jessica, whose patience, love
and understanding throughout continue to amaze me.

xviiOrder the print version of this book to get all 700+ pages!

Acknowledgements

http://www.sitepoint.com/launch/eed6c1

xviii

Introduction to .NET and
ASP.NET1

It’s being touted as the “next big thing.” Microsoft has invested millions in mar-
keting, advertising, and development to produce what it feels is the foundation
of the future Internet. It’s a corporate initiative, the strategy of which was deemed
so important, that Bill Gates himself, Microsoft Chairman and CEO, decided to
oversee personally its development. It is a technology that Microsoft claims will
reinvent the way companies carry out business globally for years to come. In his
opening speech at the Professional Developers’ Conference (PDC) held in Orlando
Florida in July of 2000, Gates stated that a transition of this magnitude only
comes around once every five to six years. What is this show-stopping technology?
It’s .NET.

What is .NET?
.NET is the result of a complete make-over of Microsoft’s software development
products, and forms part of the company’s new strategy for delivering software
as a service. The key features that .NET offers include:

� .NET Platform: The .NET platform includes the .NET Framework and tools
to build and operate services, clients, and so on. ASP.NET, the focus of this
book, is a part of the .NET Framework.

� .NET Products: .NET products currently include MSN.NET, Office.NET,
Visual Studio.NET, and Windows Server 2003, originally known as Windows
.NET Server. This suite of extensively revised systems provides developers
with a friendly, usable environment in which they may create applications
with a range of programming languages including C++. NET, Visual Ba-
sic.NET, ASP.NET, and C#. Because all these products are built on top of
.NET, they all share key components, and underneath their basic syntaxes
you’ll find they have much in common.

� .NET My Services: An initiative formerly known as "Hailstorm", .NET My
Services is a set of XML Web Services1 currently being provided by a host of
partners, developers, and organizations that are hoping to build corporate
services and applications for devices and applications, as well as the Internet.
The collection of My Services currently extends to passport, messenger, con-
tacts, email, calendars, profiles, lists, wallets, location, document stores, ap-
plication settings, favorite Websites, devices owned, and preferences for re-
ceiving alerts.

The book focuses on one of the core components within the .NET Framework:
ASP.NET.

What is ASP.NET?
For years now, Active Server Pages (ASP) has been arguably the leading choice
for Web developers building dynamic Websites on Windows Web servers. ASP
has gained popularity by offering the simplicity of flexible scripting via several
languages. That, combined with the fact that it’s built into every Microsoft
Windows-based Web server, has made ASP a difficult act to follow.

Early in 2002, Microsoft released its new technology for Internet development.
Originally called ASP+, it was finally released as ASP.NET, and represents a leap
forward from ASP both in sophistication and productivity for the developer. It
continues to offer flexibility in terms of the languages it supports, but instead of
a range of simple scripting languages, developers can now choose between several
fully-fledged programming languages. Development in ASP.NET requires not
only an understanding of HTML and Web design, but also a firm grasp of the
concepts of object-oriented programming and development.

In the next few sections, I’ll introduce you to the basics of ASP.NET. I’ll walk
you through installing it on your Web server, and take you through a simple

1Don’t worry if you don’t yet know what a Web Service is. I’ll explain all about them in Chapter 17.

Order the print version of this book to get all 700+ pages!2

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

dynamic example that demonstrates how ASP.NET pages are constructed. First,
let’s define what ASP.NET actually is.

ASP.NET is a server-side technology for developing Web applications based
on the Microsoft .NET Framework. Let’s break that jargon-filled sentence
down.

ASP.NET is server-side; that is, it runs on the Web server. Most Web designers
start by learning client-side technologies like HTML, JavaScript, and Cascading
Style Sheets (CSS). When a Web browser requests a Web page created with client-
side technologies, the Web server simply grabs the files that the browser (the
client) requests and sends them down the line. The client is entirely responsible
for reading the code in the files and interpreting it to display the page on the
screen. Server-side technologies, like ASP.NET, are different. Instead of being
interpreted by the client, server-side code (for example, the code in an ASP.NET
page) is interpreted by the Web server. In the case of ASP.NET, the code in the
page is read by the server and used dynamically to generate standard
HTML/JavaScript/CSS that is then sent to the browser. As all processing of
ASP.NET code occurs on the server, it’s called a server-side technology. As Fig-
ure 1.1 shows, the user (client) only sees the HTML, JavaScript, and CSS within
the browser. The server (and server-side technology) is entirely responsible for
processing the dynamic portions of the page.

Figure 1.1. The Web server is responsible for processing the
server-side code and presenting the output to the user (client).

ASP.NET is a technology for developing Web applications. A Web application
is just a fancy name for a dynamic Website. Web applications usually (but not
always) store information in a database on the Web server, and allow visitors to

3Order the print version of this book to get all 700+ pages!

What is ASP.NET?

http://www.sitepoint.com/launch/eed6c1

the site to access and change that information. Many different programming
technologies and supported languages have been developed to create Web applic-
ations; PHP, JSP (using Java), CGI (using Perl), and ColdFusion (using CFML)
are just a few of the more popular ones. Rather than tying you to a specific
technology and language, however, ASP.NET lets you write Web applications
using a variety of familiar programming languages.

Finally, ASP.NET is based on the Microsoft .NET Framework. The .NET
Framework collects all the technologies needed for building Windows applications,
Web applications, and Web Services into a single package with a set of more
than twenty programming languages. To develop Websites with ASP.NET, you’ll
need to download the .NET Framework Software Development Kit, which I’ll
guide you through in the next few sections.

Even with all the jargon demystified, you’re probably still wondering: what makes
ASP.NET so good? Compared with other options for building Web applications,
ASP.NET has the following advantages:

� ASP.NET lets you use your favorite programming language, or at least one
that’s really close to it. The .NET Framework currently supports over twenty
languages, four of which may be used to build ASP.NET Websites.

� ASP.NET pages are compiled, not interpreted. Instead of reading and inter-
preting your code every time a dynamic page is requested, ASP.NET compiles
dynamic pages into efficient binary files that the server can execute very
quickly. This represents a big jump in performance when compared with the
technology’s interpreted predecessor, ASP.

� ASP.NET has full access to the functionality of the .NET Framework. Support
for XML, Web Services, database interaction, email, regular expressions, and
many other technologies are built right into .NET, which saves you from
having to reinvent the wheel.

� ASP.NET allows you to separate the server-side code in your pages from the
HTML layout. When you’re working with a team composed of programmers
and design specialists, this separation is a great help, as it lets programmers
modify the server-side code without stepping on the designers’ carefully crafted
HTML—and vice versa.

With all these advantages, ASP.NET has relatively few downsides. In fact, only
two come to mind:

Order the print version of this book to get all 700+ pages!4

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

� ASP.NET is a Microsoft technology. While this isn’t a problem in itself, it
does mean that, at least for now, you need to use a Windows server to run
an ASP.NET Website. If your organization uses Linux or some other operating
system for its Web servers, you’re out of luck.

� Serious ASP.NET development requires an understanding of object-oriented
programming, which we’ll cover over the next few chapters.

Still with me? Great! It’s time to gather the tools and start building!

What Do I Need?
For the moment, if you’re going to learn ASP.NET, you’ll need a Windows-based
Web server. Open source initiatives are underway to produce versions of ASP.NET
that will run on other operating systems, such as Linux; however, these are not
expected to be available in stable form for a while.

While developers had the option of getting their feet wet with ASP on Windows
95, 98, or ME, using a scaled-down version of IIS called a Personal Web Server
(PWS), ASP.NET requires the real deal. As a bare minimum, you’ll need a com-
puter equipped with Windows 2000 Professional before you can get started.
Windows XP Professional will work fine too, as will any of the Windows 2000
Server packages and Windows 2003 Server.

Other than that, all you need is enough disk space to install the Web server In-
ternet Information Services (18 MB), the .NET Framework SDK (which in-
cludes ASP.NET; 108 MB), and a text editor. Notepad or Web Matrix[1] will
be fine for getting started, and are certainly all you’ll need for this book. However,
if you get serious about ASP.NET, you’ll probably want to invest in a development
environment like Visual Studio .NET[2].

Installing the Required Software
This section tackles the necessary installation and configuration of software that
you’ll need for this book, including:

� Internet Information Services (IIS): IIS is the Web server we will use. You’ll
need your copy of the Windows CD for the installation and configuration.

[1] http://www.asp.net/webmatrix/
[2] http://msdn.microsoft.com/vstudio/

5Order the print version of this book to get all 700+ pages!

What Do I Need?

http://www.asp.net/webmatrix/
http://msdn.microsoft.com/vstudio/
http://www.sitepoint.com/launch/eed6c1

� A Modern Web Browser: You can use any modern, standards-compliant
browser to test your work. Throughout this book, we’ll be using Internet Ex-
plorer 6.

� The .NET Framework Redistributable: As you’ve already learned in this
chapter, the .NET Framework is what drives ASP.NET. Installing the .NET
Framework installs the necessary files to run ASP.NET.

� The .NET Framework SDK: The .NET Framework Software Development
Kit (SDK) contains necessary Web application development tools, a debugger
for error correcting, a development database engine in MSDE, and a suite of
samples and documentation.

We’re also going to need a database. In this book, we’ll use:

� Microsoft Access: Access is a cheap and easy-to-use alternative to its more
robust big brother, SQL Server, and can be purchased separately, or installed
from a Microsoft Office CD.

Or alternatively, you might use:

� Microsoft SQL Server Desktop Engine (MSDE): SQL Server is the enter-
prise alternative to smaller databases such as Access. If you’re working within
a corporation where your company’s data is its lifeblood, then SQL Server is
the perfect choice. MSDE is a free, cut down version of SQL Server that you
can use for development purposes.

� Web Data Administrator: If you’re going to use MSDE, then you’ll need a
tool for modifying the data within the database. Web Data Administrator is
Microsoft’s free Web-based database management tool.

Installing Internet Information Services (IIS)
Do you need to install IIS locally even if the final site will not be hosted locally?
The answer is: yes. Even if you’re uploading your Web applications via FTP to
your Web host, installing IIS allows you to view, debug, and configure your ap-
plications locally before deployment.

IIS comes with most versions of server-capable Windows operating systems, in-
cluding Windows 2000 Professional, Server, and Advanced Server, Windows XP
Professional, and Windows Server 2003, but it’s not installed automatically in
all versions, which is why it may not be present on your computer. To see

Order the print version of this book to get all 700+ pages!6

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

whether you have IIS installed and running, simply navigate to your Administrative
Tools menu and check to see if Internet Information Services is an option. Users
of Windows 2000 Professional will find the Administrative Tools in their Control
Panels, while XP and Server family users also have shortcuts in their start menus.

If the shortcut is not visible, then you don’t have it installed. To install IIS, simply
follow these steps:

1. In the Control Panel, select Add or Remove Programs.

2. Choose Add/Remove Windows Components. The list of components will be-
come visible within a few seconds.

3. In the list of components, check Internet Information Services (IIS).

4. Click Next. Windows prompts you to insert the Windows CD and installs
IIS.

Once IIS is installed, close the Add or Remove Programs dialog. You can check
that IIS has installed correctly by seeing if you can find it within the Administrat-
ive Tools menu. If you can, it’s installed.

You are now ready to begin hosting Web applications. Although we won’t cover
the configuration of IIS for external use, I will show you how to configure IIS to
support local development of ASP.NET applications in order that they may be
uploaded to your external Web hosting provider later.

Installing Internet Explorer
As a Windows user, you have Internet Explorer installed by default, but I recom-
mend you run at least version 5.5. You can check your version by selecting About
Internet Explorer from the Help menu.

If your version of Internet Explorer is earlier than 5.5, you can download the
latest version (version 6 SP1 as of this writing) for free from the Internet Explorer
Website[3]. Remember, although ASP.NET will work with older versions of IE,
certain ASP.NET functionality works best with the latest version.

The Internet Explorer Website does not allow you to install a version of your
choice; it permits you to download only the most recent version that’s available.

[3] http://www.microsoft.com/windows/ie/

7Order the print version of this book to get all 700+ pages!

Installing Internet Explorer

http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.sitepoint.com/launch/eed6c1

Because the newest versions of Internet Explorer will include the latest patches,
it’s a good idea to stick with what they give you.

Installing the .NET Framework and SDK
To begin creating ASP.NET applications, you’ll need to install the .NET Frame-
work and SDK. The .NET Framework includes the necessary files to run and
view ASP.NET pages, while the .NET Framework SDK includes samples, docu-
mentation, and a variety of free tools.

The .NET Framework SDK also provides you with the ability to install MSDE,
the free database server that you can use with this book. Once the .NET Frame-
work and SDK are installed, little else needs to be done for you to begin working
with ASP.NET. The .NET Framework is installed as part of the operating system
if you’re lucky enough to be running Windows .NET Server 2003, in which case
you can skip directly to installing the SDK. If not, you will need to download
the .NET redistributable package, which is approximately 21 MB, and includes
the files necessary for running ASP.NET applications.

To develop .NET applications, you also need to install the software development
kit, which includes necessary tools along with samples and documentation. Be
aware that the .NET Framework SDK is 108 MB in size—be prepared to wait!

Installing the .NET Framework before you install IIS will prevent your ap-
plications from working correctly.

Download and Install the Redistributable

The best method of acquiring the .NET Framework is to download and install it
directly from the Web. To accomplish this, simply follow the steps outlined below:

1. Go to the ASP.NET support site at http://www.asp.net/ and click the Down-
load link.

2. Click the Download .NET Framework Redist Now link. Remember, we will in-
stall the redistributable first, then we will install the SDK. The link will ad-
vance you to a download page.

3. Choose the language version of the install you want, and click Download.

4. When prompted, save the file to a local directory by choosing Save.

Order the print version of this book to get all 700+ pages!8

Chapter 1: Introduction to .NET and ASP.NET

http://www.asp.net/
http://www.sitepoint.com/launch/eed6c1

5. After the download is complete, double-click the executable to begin the in-
stallation.

6. Follow the steps presented by the .NET Setup Wizard until installation
completes.

Download and Install the SDK

Now that you’ve installed the redistributable, you need to install the software
development kit (SDK):

1. Go to the ASP.NET support site at http://www.asp.net/ and click the Down-
load link.

2. Click the Download .NET Framework SDK Now link. The link will advance
you to a download page.

3. Choose the language version of the install you want to use and click Down-
load, as you did to download the redistributable.

4. When prompted to do so, save the file to a local directory by choosing Save.

5. After the download is complete, double-click the executable to begin the in-
stallation. Before you do, I strongly recommend closing all other programs
to ensure the install proceeds smoothly.

6. Follow the steps outlined by the .NET Setup Wizard until installation
completes.

The SDK will take slightly longer to install than the redistributable. Once it’s
finished, check to see if it exists in your programs menu; navigate to Start > Pro-
grams > Microsoft .NET Framework SDK.

Configuring IIS
Although little configuration needs to be done before you begin working with
IIS, I’ll use this section to introduce some basic features and functionality within
IIS:

� Determining whether ASP.NET installed correctly

� Determining where files are located on the Web server

9Order the print version of this book to get all 700+ pages!

Download and Install the SDK

http://www.asp.net/
http://www.sitepoint.com/launch/eed6c1

� Using localhost

� How to start and stop the Web server

� How to create a new virtual directory and modify its properties

Determining whether ASP.NET Installed Correctly

Once IIS is installed on your computer, you can open it by selecting Internet In-
formation Services from the Administrative Tools menu. The first task is to make
sure that ASP.NET was integrated into IIS when you installed the .NET Frame-
work. Although, logically, ASP.NET should install automatically because it’s a
component of the .NET Framework, sometimes it doesn’t. Don’t let this alarm
you—it’s a common occurrence and is addressed in the Microsoft Knowledge
Base. You can determine whether IIS was installed correctly by following these
steps:

1. Open IIS, if you haven’t already done so, and click on the + symbol next
to your computer’s name.

2. Right-click Default Web Site and select Properties.

3. Navigate to the Documents tab. If default.aspx appears within the list,
ASP.NET was installed correctly.

Another way to check whether ASP.NET installed correctly is by following these
steps:

1. Navigate to the Application Mappings menu by right-clicking the root Website
node (your computer’s name) and choosing Properties.

2. Select the Home Directory tab, and choose Configuration.

3. The Application Mappings menu displays all of the extensions and their asso-
ciated ISAPI Extension DLLs, as we see in Figure 1.2.

Order the print version of this book to get all 700+ pages!10

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

Figure 1.2. If the .aspx ISAPI Extension DLL appears within the
Application Mappings menu, then ASP.NET was installed correctly.

Since I can imagine you’re dying to know what an ISAPI Extension DLL is, let
me explain. You may know that a DLL is a Dynamically Linked Library, which
is essentially a self-contained code module that any number of applications can
draw on. When a Web server hosts a dynamic Website, page requests must be
processed by program code running on the server before the resultant HTML
can be sent back to the requesting browser (the client). Now, as was the case
with traditional ASP, ASP.NET performs this processing with the help of its In-
ternet Server Application Programming Interface (ISAPI) extension DLL.
ISAPI allows Web requests to be processed through the Web server by a DLL,

11Order the print version of this book to get all 700+ pages!

Determining whether ASP.NET Installed Correctly

http://www.sitepoint.com/launch/eed6c1

rather than an EXE, as is the case with Common Gateway Interface (CGI)
pages. This approach is advantageous because DLLs are much more efficient, and
require far less resources and memory than executables. IIS uses the file extension
of a requested page to determine which DLL should process the request according
to the mappings shown in the screenshot above. So, we can see that pages ending
in .aspx, .asmx, or .ascx, among others, will now be passed by IIS to the
ASP.NET DLL (aspnet_isapi.dll) for processing. OK, enough of the tech-talk.
Let’s get back to it!

If you’ve come to the conclusion that ASP.NET was not installed on your com-
puter, you’ll have to install it manually from the command prompt:

1. Open the command prompt by selecting Start > Run, type CMD, and select
OK.

2. Type the following command (all on one line) to install ASP.NET on Win-
dows 2000 Professional, Server, or Advanced Server:

C:\WINNT\Microsoft.NET\Framework\ver\aspnet_regiis.exe -i

Or on Windows XP Professional:

C:\WINDOWS\Microsoft.NET\Framework\ver\aspnet_regiis.exe -i

In these commands, ver is the directory corresponding to the version of the
.NET Framework you have installed.

3. Once ASP.NET is installed, close the command prompt and check again to
confirm whether ASP.NET installed correctly.

If it still hasn’t installed, try visiting the Microsoft Knowledge Base[6] for help.

Where Do I Put My Files?

Now that you have ASP.NET up and running, let’s take a look at where the files
for your Web applications are kept on the computer. You can readily set IIS to
look for Web applications within any folder of your choice, including the My
Documents folder or even a network share. By default, IIS maps the wwwroot
subfolder of C:\Inetpub on the server to your Website’s root directory, and it
is generally considered a good repository for storing and managing your Web
applications.

[6] http://support.microsoft.com/

Order the print version of this book to get all 700+ pages!12

Chapter 1: Introduction to .NET and ASP.NET

http://support.microsoft.com/
http://www.sitepoint.com/launch/eed6c1

If you open this wwwroot folder in Windows Explorer, and compare it with the
folder tree that appears on the left of the IIS console, you’ll notice that the folders
in Explorer also appear under your Default Web Site node. Note that, while
several of these folders have the regular Explorer folder icon in the IIS view,
others have a special Web application icon, indicating that these folders contain
the pages and other items for a particular Web application. These special folders
are what IIS calls Virtual Directories, and, in fact, they do not have to share
the name of the physical folder to which they map. We’ll see more on this shortly.

Using Localhost

By putting your files within C:\Inetpub\wwwroot, you’ve given your Web server
access to them. If you’ve been developing Web pages for a long time, habit may
drive you to open files directly in your browser by double-clicking on the HTML
files. Because ASP.NET is a server-side language, your Web server needs to have
a crack at the file before it’s sent to your browser for display. If the server doesn’t
get this opportunity, the ASP.NET code is not converted into HTML that your
browser can understand. For this reason, ASP.NET files can’t be opened directly
from Windows Explorer.

Instead, you need to open them in your browser using the special Web address
that indicates the current computer, http://localhost/. If you try this now, IIS will
open up some HTML help documentation, because we’ve not yet set up a default
Website. This localhost name is, in fact, equivalent to the so-called loopback IP
address, 127.0.0.1, IP which you can check out by entering http://127.0.0.1/ in
your browser; you should see the same page you saw using localhost. If you know
them, you can also use the name of your server or the real IP address of your
machine to the same effect.

Note that if you do try any of these equivalents, a dialog will appear before the
page is opened, asking for your network credentials, because you’re no longer
using your local authentication implicit with localhost.

Stopping and Starting IIS

Now that we have IIS up and running, and ASP.NET installed, let’s look at how
you can start, stop, and restart IIS if the need arises. For the most part, you’ll
always want to have IIS running, except when you’re using certain programs
locally that open ports and allow intruders to compromise the security of your
computer. Some programs, like Kazaa, automatically stop IIS upon launch, be-
cause of potential security vulnerabilities. If you want to stop IIS when it’s not
being used, simply follow the steps outlined below:

13Order the print version of this book to get all 700+ pages!

Using Localhost

http://localhost/
http://127.0.0.1/
http://www.sitepoint.com/launch/eed6c1

1. With IIS open, select Default Web Site. The Play, Stop, and Pause icons will
become visible.

2. Select Stop, as shown in Figure 1.3.

Figure 1.3. Select the Stop icon to stop IIS.

3. To start IIS again, all you need to do is click the Play icon.

Virtual Directories

I’ve already briefly introduced the concept of virtual directories, which are a
key mechanism in IIS; now I’d like to define a virtual directory a little more
clearly.

A virtual directory is simply a name (or alias) that points to a local folder or
network share on the server. This alias is then used to access the Web application
held in that physical location. For instance, imagine your company has a Web
server that serves documents from C:\Inetpub\wwwroot\mySiteA. Your users
can access these documents through this URL:

http://www.mycompany.com/mySiteA/

You could also set up another physical location as a different virtual directory in
IIS. If, for instance, you were developing another Web application, you could
store the files for it in C:\dev\newSiteB. You could then create in IIS a new
virtual directory called, say, CoolPages, which maps to this location. This new
site would then be accessible through this URL:

http://www.mycompany.com/CoolPages/

As this application is in development, you would probably want to set IIS to hide
this virtual directory from the public until the project is complete. Your existing
Website would still be visible.

Order the print version of this book to get all 700+ pages!14

Chapter 1: Introduction to .NET and ASP.NET

http://www.mycompany.com/mySiteA/
http://www.mycompany.com/CoolPages/
http://www.sitepoint.com/launch/eed6c1

Let’s create a virtual directory on your server now:

1. Right-click on Default Web Site and select Virtual Directory from the New
submenu. The Virtual Directory Creation Wizard will appear. Click Next.

2. Type in an alias for your virtual directory. I’ll type in WebDocs. Click Next.

3. Browse for the directory in which your application is located. For this ex-
ample, I’m going to choose the My Pictures folder located within the My
Documents directory. Click Next.

4. Set Access Permissions for your directory. Typically, you’ll want to check
Read, Run scripts, and Browse. You will not need to select Write until we get
into accessing the file system, discussed in Chapter 15. Click Next.

5. Click Finish.

Once your new virtual directory has been created, it will appear within the
Website list as shown in Figure 1.4.

Figure 1.4. Once the virtual directory has been created, it will
appear within the list of sites.

Now, if you type http://localhost/WebDocs/ in your browser, IIS will recognize
that you’re looking for a Website held in the My Pictures directory. By default,
when we request a virtual directory in this way, IIS looks for an index HTML
page such as index.html or default.htm. If there is no index page—in this case
there isn’t—IIS assumes we want to see the contents of the requested location.

15Order the print version of this book to get all 700+ pages!

Virtual Directories

http://localhost/WebDocs/
http://www.sitepoint.com/launch/eed6c1

However, viewing the entire content of a location like this is not usually something
we want our users to do; they could then freely see and access all the files and
directories that make up our Web page. Not only is this a little messy and unpro-
fessional, but it also can provide information to hackers that could let them attack
our site. So, by default, IIS won’t allow this—we’ll receive a message reading,
“Directory Listing Denied” in our browser.

Bearing that in mind, there are, however, circumstances in which we do want to
allow directory listings, so let’s see how we can enable this in IIS. First, we have
to right click the virtual directory in the IIS console, and choose Properties. Then,
we select the Virtual Directory tab, and check the Directory browsing box. When
we click OK and open (or refresh) the same URL in our browser, we’ll see a list
of all the files within the My Pictures folder.

The Properties dialog that we’ve just used lets us configure various other useful
properties, including:

Virtual Directory Allows you to configure directory-level properties in-
cluding path information, virtual directory name, ac-
cess permissions, etc. Everything that was set up
through the wizard is modifiable through this tab.

Document Allows you to configure a default page that displays
when the user types in a full URL. For instance, be-
cause default.aspx is listed as a default page, the
user needs only to type in http://www.mysite.com/ into
the browser’s address bar, rather than
http://www.mysite.com/default.aspx. You can easily
change and remove these by selecting the appropriate
button to the right of the menu.

Directory Security Provides you with security configuration settings for
the virtual directory.

HTTP Headers Gives you the ability to forcefully control page caching
on the server, add custom HTTP Headers, Edit Ratings
(helps identify the content your site provides to users),
and create MIME types. Don’t worry about this for
now.

Custom Errors Allows you to define your own custom error pages.
Rather than the standard error messages that appear
within Internet Explorer, you can customize error

Order the print version of this book to get all 700+ pages!16

Chapter 1: Introduction to .NET and ASP.NET

http://www.mysite.com/
http://www.mysite.com/default.aspx
http://www.sitepoint.com/launch/eed6c1

messages with your company’s logo and an error mes-
sage of your choice.

One thing to note at this point is that we can set properties for the Default Web
Site node, and choose to have them ‘propagate’ down to all the virtual directories
we’ve created. So, let’s now go ahead and enable directory browsing as the default
for our Web applications. Please do remember what I’ve said about the dangers
of allowing directory browsing on a production Web application, and keep in
mind that you should never normally allow it in a publicly accessible environment
(even on an intranet). However, during development, this facility can be very
handy, as it allows us to navigate and run all our virtual directories by clicking
on the listing in our browser, rather than having to type in long URLs each time.

To enable directory browsing:

1. Right-click Default Web Site and select Properties. The Default Web Site
Properties dialog will appear.

2. First, we need to remove the default setting which opens up the IIS help
documentation for our root directory, so choose the Documents tab.

3. Select iisstart.asp, and click Remove.

4. Now choose the Home Directory tab.

5. Check the Directory Browsing check box and select OK.

6. When the Inheritance Overrides dialog appears, click Select All and then OK.

To try it out, open your browser and type http://localhost/ in the address bar.
The directory listing will appear within the browser as shown in Figure 1.5.

17Order the print version of this book to get all 700+ pages!

Virtual Directories

http://localhost/
http://www.sitepoint.com/launch/eed6c1

Figure 1.5. Enabling directory browsing for the Web server
provides you with the ability to view directories in a way that’s
similar to the view you’d see within Windows Explorer.

As you create Web applications, you’ll only need to select the directory that the
Web application resides in to launch your work, but do remember to disable
directory browsing should you later make your IIS Web server publicly visible.

Installing Microsoft Access
Access is Microsoft’s database solution for both developers and small companies
who need to house data within a small yet reliable store. Because Microsoft Access
is widely available, it’s usually the perfect choice for discussion and use within
books such as this. Although we won’t be covering data access until Chapter 5,
you may want to start thinking about the scope of your or your company’s needs
and choose a database accordingly. If you’re a small company looking for some-
thing cheap, reliable, and easy to use, then Access is for you. This book will cover
examples using both Access and MSDE. Even if you plan on using MSDE, you
may still want to read this section, as Access provides some good data modeling
tools that aren’t available to you through Web Data Administrator.

You can find more information on Access from the Access Website[15]. Here,
you can find the latest updates, news, and purchase information for Microsoft
Access.

[15] http://www.microsoft.com/office/access/

Order the print version of this book to get all 700+ pages!18

Chapter 1: Introduction to .NET and ASP.NET

http://www.microsoft.com/office/access/
http://www.sitepoint.com/launch/eed6c1

Access is bundled with Professional editions of the Microsoft Office suite, so you
may already have it installed. If you’ve already installed Microsoft Office on your
computer, but didn’t install Access at the same time, you’ll need to add it to your
installation. The following assumes that you have either Microsoft Office 2000
or XP Professional handy, and that you’ll be installing from that CD:

1. Navigate to the Add or Remove Programs menu located within the Control
Panel.

2. Select your Microsoft Office installation from the Programs menu and select
Change.

3. When the Microsoft Office Setup dialog appears, select Add/Remove Features
and click Next.

4. Select Run from My Computer from the Access program menu.

5. Click Update. You will be prompted to insert your Microsoft Office CD, so
make sure you have it handy. Access will now install.

If you plan to purchase Access, you might like to consider purchasing the Mi-
crosoft Office bundle, as you receive Access, Word, Outlook, PowerPoint, and
Excel for much less than the total cost of each of the components. Installing Access
from either the Microsoft Access or Microsoft Office CDs is easy—just insert the
CD, follow the onscreen prompts, and accept the default installation.

That’s all there is to it. You are now ready to begin working with database-driven
Web applications.

Installing SQL Server Desktop Engine (MSDE)
SQL Server 2000 is Microsoft’s database solution for medium to large companies
and enterprises. It is quite a bit more expensive than Access, generally requires
its own dedicated “database server”, and, at times, requires the hiring of a certified
database administrator (DBA) to maintain; yet it offers a robust and scalable
solution for larger Web applications.

I’ll assume that if you’re reading this book, you probably don’t want to invest in
something as massive as SQL Server, and that your needs are better suited to
something free that’s nearly as powerful for testing and development purposes.
If this is the case, then Microsoft’s SQL Server Desktop Engine, or MSDE, is
perfect for you. MSDE is Microsoft’s free database alternative to SQL Server. It

19Order the print version of this book to get all 700+ pages!

Installing SQL Server Desktop Engine (MSDE)

http://www.sitepoint.com/launch/eed6c1

functions and stores data exactly as SQL Server does, but is licensed for develop-
ment purposes only.

Once the .NET Framework SDK is installed, installing MSDE is a snap and can
be completed as follows:

1. Select Start > Programs > Microsoft Framework SDK, and choose Samples and
QuickStart Tutorials.

2. Choose the Download and Install the Microsoft SQL Server 2000 Desktop
Engine link. You will be redirected to a download page on Microsoft’s
Website.

3. Select Step 1: Download the Microsoft SQL Server 2000 Desktop Engine (68.4
MB).

4. Save the file onto your hard drive. At nearly 70 MB, this may take some
time, so you may want to move onto the section called “Your First ASP.NET
Page” later in this chapter while the download continues, as our first example
doesn’t use a database. Once the download is done, come back and continue
the installation process.

5. Double-click the downloaded file and follow the instructions to unpack the
MSDE setup files.

6. Open the Command Prompt by selecting Start > Run; type cmd, and select
OK.

7. Change to the directory to which you extracted the files using cd on the
command line. MSDE extracts to C:\sql2ksp3\MSDE by default.

8. Type the following command (all on one line) in the MSDE directory to set
up MSDE:

Setup.exe /qb+ INSTANCENAME=NetSDK DISABLENETWORKPROTOCOLS=1
SAPWD=PASSWORD

The complete set of commands is shown in Figure 1.6.

Order the print version of this book to get all 700+ pages!20

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

Figure 1.6. Install MSDE by running the command line
executable and setting necessary parameters.

It’s a good idea to set a suitable system administrator password using the
SAPWD parameter as shown above, although you can apply the traditional
blank password by using the BLANKSAPWD=1 parameter instead.

9. MSDE will now install.

10. Restart your computer for changes to take effect.

If all goes well, when the computer restarts, you’ll notice in the task bar tray a
small icon that looks like a cylinder with a play icon on top, as shown in Fig-
ure 1.7.

Figure 1.7. MSDE runs out of sight within the task bar tray.

That icon represents the database Service Manager. It lets you start and stop the
database engine; all you have to do is double-click that icon within the task bar
tray. Double-click the icon now to open the Service Manager Dialog, where you
can select the Play icon to start the service, or the Stop icon to stop the service.

In some cases, you may not see either a green triangle or a red square; instead,
you see an empty white circle. When you open Service Manager, you’ll see the
message “Not Connected” appear in the status bar at the bottom. You’ll need to
type YourComputer\netsdk in the Server drop-down (where YourComputer is

21Order the print version of this book to get all 700+ pages!

Installing SQL Server Desktop Engine (MSDE)

http://www.sitepoint.com/launch/eed6c1

the name of your computer), and click Refresh services. MSDE should then con-
nect, and the green triangle should appear.

Installing and Configuring Web Data
Administrator

In order to use MSDE effectively, you’ll need some sort of administration tool
to work with your databases. Web Data Administrator is another free tool
provided by Microsoft that allows you to manage your instance of MSDE locally
and remotely using a Web-based interface. You can download this program from
Microsoft’s developer site[16]. Scroll to the bottom of that page and you’ll find
two search boxes. Leave the top one at All, and type Web Data Administrator
in the bottom one, then click search. The search results should include the correct
page.

Once you’ve downloaded it, simply double-click the .msi file to install. Once
installed, Web Data Administrator can be accessed through your browser at the
URL http://localhost/SqlWebAdmin, but before it can be used, you’ll need to
enable what is known as SQL Mixed Mode authentication.

This involves making a small change to the registry, but don’t be put off. If you
follow these instructions exactly, you won’t do any harm. Let’s do it! Click Start,
then Run…. In the dialog, type regedit and press Enter to open the registry ed-
itor. Now expand the HKEY_LOCAL_MACHINE node in the left hand pane, then
expand the SOFTWARE node. Next, find and open the Microsoft node, and, inside
that, open one labeled Microsoft SQL Server. In there, you should find a node
called NETSDK, which contains another, called MSSQLServer. Select that node,
and find the key (in the right hand pane) called LoginMode. Double-click that,
and change its Value data from 1 to 2, then click OK. Now, close regedit, and
restart your computer. Phew! That was a bit of a trek, but I hope you found it
easier in practice than it appears on paper!

Now, open the Web Data Administrator URL given above. You’ll be asked for
the login, password, and server name for your instance of MSDE. Type sa in the
user name box, and the password that you supplied during the installation of
MSDE. If you’re unsure what the name of your server is, double-click the database
engine icon within the task bar tray. The name of your server is located within
the server drop-down menu.

[16] http://msdn.microsoft/downloads/

Order the print version of this book to get all 700+ pages!22

Chapter 1: Introduction to .NET and ASP.NET

http://msdn.microsoft/downloads/
http://localhost/SqlWebAdmin
http://www.sitepoint.com/launch/eed6c1

Once you’ve done this and clicked Login, you will see a list of the databases that
are currently available from MSDE, as shown in Figure 1.8.

Figure 1.8. Web Data Administrator allows you to work with your
databases within MSDE.

More information on Web Data Administrator, MSDE, and databases will be
covered in Chapter 6.

Your First ASP.NET Page
For your first run at ASP.NET, we’ll create the simple example shown in Fig-
ure 1.9.

23Order the print version of this book to get all 700+ pages!

Your First ASP.NET Page

http://www.sitepoint.com/launch/eed6c1

Figure 1.9. We’ll create a simple ASP.NET page that says "Hello
there" and displays the time.

Let’s get started! Open your text editor (Notepad2 is fine). If you have software
that creates ASP.NET pages automatically, such as Visual Studio .NET, please
do not use it yet. These programs provide lots of powerful tools for building
complex ASP.NET pages in a hurry, but for simple examples like this one, they
tend to get in the way, rather than provide assistance.

Open your text editor, and start by entering the plain HTML for our page:

<html>
<head>
<title>My First ASP.NET Page</title>
</head>
<body>
<p>Hello there!</p>
<p>The time is now: </p>
</body>
</html>

So far, so good, right? Now, we’ll add some ASP.NET code that will create the
dynamic elements of the page, starting with the time.

<html>
<head>

2If you do use Notepad, be aware that to need to put quotes around any filename that doesn’t end

with .txt in the Save As dialog. Most ASP.NET file names end with .aspx; if you forget to put

quotes around them when saving, you’ll end up with files called filename.aspx.txt!

Order the print version of this book to get all 700+ pages!24

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

<title>My First ASP.NET Page</title>
</head>
<body>
<p>Hello there!</p>
<p>The time is now: <asp:Label runat="server" id="lblTime" /></p>
</body>
</html>

We’ve added an <asp:Label> tag to the document. This is a special tag that lets
us insert dynamic content into the page. The asp: part of the tag name identifies
it as a built-in ASP.NET tag. ASP.NET comes with numerous built-in tags;
<asp:Label> is arguably the simplest.

The runat="server" attribute identifies the tag as something that needs to be
handled on the server. In other words, the Web browser will never see the
<asp:Label> tag; ASP.NET sees it and converts it to regular HTML tags before
the page is sent to the browser. It’s up to us to write the code that will tell
ASP.NET to replace this particular tag with the current time.

To do this, we must add some script to our page. Like ASP before it, ASP.NET
gives you the choice of a number of different languages to use in your scripts.
The two most common languages are Visual Basic.NET (VB.NET) and C#
(pronounced “C sharp”). Let’s take a look at examples using both. Here’s a version
of the page in VB.NET:

VB.NET File: FirstPage.aspx

<html>
<head>
<title>My First ASP.NET Page</title>
<script runat="server" language="VB">
Sub Page_Load(s As Object, e As EventArgs)
 lblTime.Text = DateTime.Now.ToString()
End Sub
</script>
</head>

<body>
<p>Hello there!</p>
<p>The time is now: <asp:Label runat="server" id="lblTime" /></p>
</body>
</html>

Here’s the same page written in C#:

25Order the print version of this book to get all 700+ pages!

Your First ASP.NET Page

http://www.sitepoint.com/launch/eed6c1

C# File: FirstPage.aspx

<html>
<head>
<title>My First ASP.NET Page</title>
<script runat="server" language="C#">
protected void Page_Load(Object s, EventArgs e)
{
 lblTime.Text = DateTime.Now.ToString();
}
</script>
</head>

<body>
<p>Hello there!</p>
<p>The time is now: <asp:Label runat="server" id="lblTime" /></p>
</body>
</html>

Both versions of the page achieve exactly the same thing. If you’ve never done
any server-side programming before, this may be starting to look a little scary.
Let’s break down the new elements of this page:

File: FirstPage.aspx (excerpt)

<script runat="server">

This tag, otherwise known as a code declaration block, marks the start of server-
side code. Like the <asp:Label> tag, this <script> tag uses the runat="server"
attribute to let ASP.NET know that the tag should be processed before sending
the page to the browser.

VB.NET File: FirstPage.aspx (excerpt)

Sub Page_Load(s As Object, e As EventArgs)

C# File: FirstPage.aspx (excerpt)

protected void Page_Load(Object s, EventArgs s) {

I won’t go into too much detail here. For now, all you need to know is that you
can write script fragments that are run in response to different events, such as a
button being clicked or an item being selected from a drop-down list. What the
first line basically says is "execute the following script whenever the page is loaded."
Note that C# groups code into blocks with curly braces, while Visual Basic tends
to use statements such as End Sub to mark the end of a particular sequence. So,
the curly brace in the C# code above ({) marks the start of the script that will
be executed when the page loads for the first time. For the technically minded,

Order the print version of this book to get all 700+ pages!26

Chapter 1: Introduction to .NET and ASP.NET

http://www.sitepoint.com/launch/eed6c1

the code we’ve just seen is a method definition for a page load event handler,
which is essentially the code that the server runs when the page is requested for
the first time.

Finally, here’s the line that actually displays the time on the page:

VB.NET File: FirstPage.aspx (excerpt)

 lblTime.Text = DateTime.Now.ToString()

C# File: FirstPage.aspx (excerpt)

 lblTime.Text = DateTime.Now.ToString();

You can see that these two .NET languages have much in common, because they
are both built on the .NET Framework. In fact, the only difference with the above
line is that C# ends code lines with a semicolon (;). In plain English, here’s what
this line says:

Set the Text property of lblTime to the current date/time, ex-
pressed as a string of text.

Note that lblTime is the value we gave for the id attribute of the <asp:Label>
tag where we want to show the time. So, lblTime.Text, the Text property of
lblTime, refers to the text that will be displayed by the tag. DateTime is a class
that’s built into the .NET Framework, and which lets you perform all sorts of
useful functions with dates and times. There are thousands of these classes that
do all sorts of useful things within the .NET Framework. These classes are also
known as the .NET Framework Class Library.

The DateTime class has a property called Now that always contains the current
date and time. This Now property has a method called ToString() that expresses
that date and/or time as text (a segment of text is commonly called a string in
programming circles). Classes, properties, and methods: these are all important
words in the vocabulary of any programmer, and we’ll discuss them later on in
the book. For now, all you need to take away from this discussion is that Date-
Time.Now.ToString() will give you the current date and time as a text string,
which you can then tell your <asp:Label> tag to display. The rest of the script
block simply ties up loose ends:

VB.NET File: FirstPage.aspx (excerpt)

End Sub
</script>

27Order the print version of this book to get all 700+ pages!

Your First ASP.NET Page

http://www.sitepoint.com/launch/eed6c1

C# File: FirstPage.aspx (excerpt)

}
</script>

The closing (End Sub) and (}) mark the end of the script to be run when the
page is loaded, and the </script> tag marks the end of the script block.

Create a new subdirectory of C:\Inetpub\wwwroot on your Web server, and save
your file there under the name FirstPage.aspx. Now, open your browser and
point type this URL in the address bar:

http://localhost/test/FirstPage.aspx

Replace test with the name that you gave to the directory in which you saved
the file. You should see a page similar to the one we saw in Figure 1.9.

If the time isn’t displayed, chances are that you opened the file directly in your
browser instead of loading it through your Web server. Because ASP.NET is a
server-side language, your Web server needs to access the file before it’s sent to
your browser for display. If it doesn’t get access to the file, the ASP.NET code is
never converted into HTML that your browser can understand, so make sure
you load the page by typing an actual URL (e.g. http://localhost/test/index.aspx),
not just a path and filename.

With the page displayed in your browser, use the View Source feature (View,
Source in Internet Explorer) to view the HTML code for the page. Here’s what
you’ll see:

<html>
<head>
<title>My First ASP.NET Page</title>
</head>
<body>
<p>Hello there!</p>
<p>The time is now: 10/13/2003 1:55:09
PM</p>
</body>
</html>

Notice that all the ASP.NET code has gone! Even the script block has been
completely removed, and the <asp:Label> tag has been replaced by a
tag (with the same id attribute as the <asp:Label> tag that we used) containing
the date and time string.

Order the print version of this book to get all 700+ pages!28

Chapter 1: Introduction to .NET and ASP.NET

http://localhost/test/index.aspx
http://www.sitepoint.com/launch/eed6c1

That’s how ASP.NET works. From the Web browser’s point of view, there is
nothing special about an ASP.NET page; it’s just plain HTML like any other. All
the ASP.NET code is run by your Web server and converted to plain HTML
that’s sent to the browser. So far, so good: the example above was fairly simple.
The next chapter will get a bit more challenging as we begin to introduce you to
some valuable programming concepts.

The ASP.NET Support Site
The official Microsoft ASP.NET support Website can be found at
http://www.asp.net/. As you develop ASP.NET Web applications, you will un-
doubtedly have questions and problems that need to be answered. The ASP.NET
support Website was developed by Microsoft as a portal for the ASP.NET com-
munity to answer the questions and solve the problems that developers have
while using ASP.NET. The support Website provides useful information, such
as news, downloads, articles, and discussion forums. You can also ask questions
of the experienced community members in the SitePoint Forums[20].

Summary
In this chapter, you learned about .NET. You also learned of the benefits of
ASP.NET and that it’s a part of the .NET Framework. First, you learned about
the constructs of ASP.NET and how to locate and install the .NET Framework.
Then, we explored the software that’s required not only for this book, but also
in order for you or your company to progress with ASP.NET.

You’ve gained a solid foundation in the world of ASP.NET! The next chapter
will build on this knowledge and begin to introduce you to ASP.NET in more
detail, including page structure, languages to use, programming concepts, and
form processing.

[20] http://www.sitepoint.com/forums/

29Order the print version of this book to get all 700+ pages!

The ASP.NET Support Site

http://www.asp.net/
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/eed6c1

30

ASP.NET Basics2
So far, you’ve learned what ASP.NET is, and what it can do—you even know
how to create a simple ASP.NET page. Don’t worry if it seems a little bewildering
right now, because, as this book progresses, you’ll learn how to use ASP.NET at
more advanced levels. So far, you’ve installed the necessary software to get going
and have been introduced to some very simple form processing techniques.

As the next few chapters unfold, we’ll introduce more advanced topics, including
controls, programming techniques, and more. Before we can begin developing
applications with ASP.NET, however, you’ll need to understand the inner
workings of a typical ASP.NET page. This will help you identify the various parts
of the ASP.NET page referenced by the many examples within the book. In this
chapter, we’ll talk about some key mechanisms of an ASP.NET page, specifically:

� Page structure

� View state

� Namespaces

� Directives

We’ll also cover two of the "built-in" languages supported by the .NET Framework:
VB.NET and C#. As this section begins to unfold, we’ll explore the differences,

similarities, and power that the two languages provide in terms of creating
ASP.NET applications.

So, what exactly makes up an ASP.NET page? The next few sections will give
you an in-depth understanding of the constructs of a typical ASP.NET page.

ASP.NET Page Structure
ASP.NET pages are simply text files with the .aspx file name extension that can
be placed on an IIS server equipped with ASP.NET. When a browser requests
an ASP.NET page, the ASP.NET runtime (as a component of the .NET Frame-
work’s Common Language Runtime, or CLR) parses and compiles the target file
into a .NET Framework class. The application logic now contained within the
new class is used in conjunction with the presentational HTML elements of the
ASP.NET page to display dynamic content to the user. Sounds simple, right?

An ASP.NET page consists of the following elements:

� Directives

� Code declaration blocks

� Code render blocks

� ASP.NET server controls

� Server-side comments

� Server-side include directives

� Literal text and HTML tags

It’s important to remember that ASP.NET pages are just text files with an .aspx
extension that are processed by the runtime to create standard HTML, based on
their contents. Presentational elements within the page are contained within the
<body> tag, while application logic or code can be placed inside <script> tags.
Remember this pattern from the sample at the end of the previous chapter? Fig-
ure 2.1 illustrates the various parts of that page.

Order the print version of this book to get all 700+ pages!32

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

Figure 2.1. All the elements of an ASP.NET page are highlighted.
Everything else is literal text and HTML tags.

As you can see, this ASP.NET page contains examples of all the above components
(except server-side includes) that make up an ASP.NET page. You won’t often
use every single element in a given page, but you should become familiar with
these elements, the purpose that each serves, and how and when it’s appropriate
to use them.

Directives
The directives section is one of the most important parts of an ASP.NET page.
Directives control how a page is compiled, specify settings when navigating
between pages, aid in debugging (error-fixing), and allow you to import classes
to use within your page’s code. Directives start with the sequence <%@, followed
by the directive name, plus any attributes and their corresponding values, then
end with %>. Although there are many directives that you can use within your
pages, the two most important are the Import and Page directives. We will discuss
directives in greater detail later, but, for now, know that the Import and Page
directives are the most useful for ASP.NET development. Looking at the sample
ASP.NET page in Figure 2.1, you can see that a Page directive was used at the
top of the page as shown:

33Order the print version of this book to get all 700+ pages!

Directives

http://www.sitepoint.com/launch/eed6c1

VB.NET

<%@ Page Language="VB" %>

C#

<%@ Page Language="C#" %>

The Page directive, in this case, specifies the language that’s to be used for the
application logic by setting the Language attribute appropriately. The value
provided for this attribute, in quotes, specifies that we’re using either VB.NET
or C#. There’s a whole range of different directives; we’ll see a few more later in
this chapter.

Unlike ASP, in ASP.NET, directives can appear anywhere on a page, but are
most commonly written as the very first lines.

Code Declaration Blocks
In Chapter 3 we’ll talk about code-behind pages and how they let us separate
our application logic from an ASP.NET page’s HTML presentation code. If you’re
not working with code-behind pages, however, code declaration blocks must
be used to contain all the application logic of your ASP.NET page. This application
logic defines variables, subroutines, functions, and more. In our page, we place
the code inside <script> tags, like so:

VB.NET

<script runat="server">
Sub mySub()
 ' Code here
End Sub
</script>

Here, the tags enclose some VB.NET code, but it could just as easily be C# if
our page language were set thus:

C#

<script runat="server">
void mySub() {
 // Code here
}
</script>

Order the print version of this book to get all 700+ pages!34

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

Comments in VB.NET and C# Code

Both of these code snippets contain comments—explanatory text that will be ignored by
ASP.NET, but which serves to describe how the code works.

In VB.NET code, a single quote or apostrophe (') indicates that the remainder of the line
is to be ignored as a comment.

In C# code, two slashes (//) does the same. C# code also lets you span a comment over
multiple lines by beginning it with /* and ending it with */.

Before .NET emerged, ASP also supported such script tags using a runat="serv-
er" attribute, although they could only ever contain VBScript, and, for a variety
of reasons, they failed to find favor among developers. Code declaration blocks
are generally placed inside the <head> tag of your ASP.NET page. The sample
ASP.NET page shown in Figure 2.1, for instance, contained the following code
declaration block:

VB.NET

<script runat="server">
Sub Page_Load()
 lblMessage.Text = "Hello World"
End Sub
</script>

Perhaps you can work out what the equivalent C# code would be:

C#

<script runat="server">
void Page_Load() {
 lblMessage.Text = "Hello World";
}
</script>

The <script runat="server"> tag accepts two other attributes, as well. You
can set the language used in the block with the language attribute:

VB.NET

<script runat="server" language="VB">

C#

<script runat="server" language="C#">

If you don’t specify a language within the code declaration block, the ASP.NET
page will use the language provided by the language attribute of the Page direct-

35Order the print version of this book to get all 700+ pages!

Code Declaration Blocks

http://www.sitepoint.com/launch/eed6c1

ive. Each page may only contain code in a single language; for instance, it is not
possible to mix VB.NET and C# in the same page.

The second attribute available is src, which lets you specify an external code file
to use within your ASP.NET page:

VB.NET

<script runat="server" language="VB" src="mycodefile.vb">

C#

<script runat="server" language="C#" src="mycodefile.cs">

Code Render Blocks
You can use code render blocks to define inline code or inline expressions that
execute when a page is rendered, and you may recognize these blocks from tradi-
tional ASP. Code within a code render block is executed immediately as it is en-
countered, usually when the page is loaded or rendered for the first time, and
every time the page is loaded subsequently. Code within a code declaration block,
on the other hand, occurring within script tags, is only executed when it is called
or triggered by user or page interactions. There are two types of code render
blocks: inline code and inline expressions, both of which are typically written
within the body of the ASP.NET page.

Inline code render blocks execute one or more statements and are placed directly
inside a page’s HTML within <% and %> characters.

Inline expression render blocks can be compared to Response.Write() in classic
ASP. They start with <%= and end with %>, and are used to display values of the
variables and methods on a page.

Looking back at Figure 2.1, you can see both types of code render blocks:

VB.NET

<% Dim Title As String = "Zak Ruvalcaba" %>
<%= Title %>

This equates to the following C#:

C#

<% String Title = "Zak Ruvalcaba"; %>
<%= Title %>

Order the print version of this book to get all 700+ pages!36

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

The first line represents an inline code render block and must contain complete
statements in the appropriate language. Here, we’re setting the value of the Title
variable to the string Zak Ruvalcaba. The last line is an example of an inline
expression render block used to write out the value of the Title variable, Zak
Ruvalcaba, onto the page.

ASP.NET Server Controls
At the heart of ASP.NET pages lies the server controls, which represent dynamic
elements that your users can interact with. There are four basic types of server
control: ASP.NET controls, HTML controls, validation controls, and user controls.

All ASP.NET controls must reside within a <form runat="server"> tag in order
to function correctly. The only two exceptions to this rule are the
HtmlGenericControl and the Label Web control.

Server controls offer the following advantages to ASP.NET developers:

� We can access HTML elements easily from within our code: we can change
their characteristics, check their values, or even dynamically update them
straight from our server-side programming language of choice.

� ASP.NET controls retain their properties even after the page has been pro-
cessed. This process is known as view state. We’ll be covering view state later
in this chapter. For now, just know that view state prevents the user from
losing data that has already been entered into a form once it’s been sent to
the server for processing. When the response comes back to the client’s
browser, text box values, drop-down list selections, etc., are all retained through
view state.

� With ASP.NET controls, developers are able to separate the presentational
elements (everything the user sees) and application logic (dynamic portions
of the ASP.NET page) of a page so that each can be considered separately.

Because ASP.NET is all about controls, we’ll be discussing them in greater detail
as we move through this book. For instance, in the next few chapters, we’ll discuss
HTML controls and Web controls (Chapter 4), Validation controls (Chapter 5),
Data controls (Chapter 9), and so on.

37Order the print version of this book to get all 700+ pages!

ASP.NET Server Controls

http://www.sitepoint.com/launch/eed6c1

Server-Side Comments
Server-side comments allow you to include, within the page, comments or notes
that will not be processed by ASP.NET. Traditional HTML uses the <!-- and -
-> character sequences to delimit comments; anything found within these will
not be displayed to the user by the browser. ASP.NET comments look very sim-
ilar, but use the sequences <%-- and --%>.

Our ASP.NET example contains the following server-side comment block:

VB.NET

<%-- Declare the title as string and set it --%>

The difference between ASP.NET comments and HTML comments is that
ASP.NET comments are not sent to the client at all. Don’t use HTML comments
to try and comment out ASP.NET code. Consider the following example:

VB.NET

<!--
<button runat="server" id="myButton" onServerClick="Click">Click
Me</button>
<% Title = "New Title" %>
-->

Here, it looks as if a developer has attempted to use an HTML comment to hide
not only an HTML button control, but a code render block as well. Unfortunately,
HTML comments will only hide things from the browser, not the ASP.NET
runtime. So, in this case, while we won’t see anything in the browser that repres-
ents these two lines, they will, in fact, have been processed by ASP.NET, and the
value of the variable Title will be changed to New Title. The code could be
modified to use server-side comments very simply:

VB.NET

<%--
<button runat="server" id="myButton" onServerClick="Click">Click
Me</button>
<% Title = "New Title" %>
--%>

Now, the ASP.NET runtime will ignore the contents of this comment, and the
value of the Title variable will not be changed.

Order the print version of this book to get all 700+ pages!38

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

Server-Side Include Directives
Server-side include directives enable developers to insert the contents of an ex-
ternal file anywhere within an ASP.NET page. In the past, developers used server-
side includes when inserting connection strings, constants, and other code that
was generally repeated throughout the entire site.

There are two ways your server-side includes can indicate the external file to in-
clude: using either the file or the virtual attribute. If we use file, we specify
its filename as the physical path on the server, either as an absolute path starting
from a drive letter, or as a path relative to the current file. Below, we see a file
server-side include with a relative path:

<!-- #INCLUDE file="myinclude.aspx" -->

virtual server-side includes, on the other hand, specify the file’s location on the
Website, either with an absolute path from the root of the site, or with a path
relative to the current page. The example below uses an absolute virtual path:

<!-- #INCLUDE virtual="/directory1/myinclude.aspx" -->

Note that although server-side includes are still supported by ASP.NET, they
have been replaced by a more robust and flexible model known as user controls.
Discussed in Chapter 16, user controls allow for developers to create a separate
page or module that can be inserted into any page within an ASP.NET application.

Literal Text and HTML Tags
The final element of an ASP.NET page is plain old text and HTML . Generally,
you cannot do without these elements, and HTML is the means for displaying
the information from your ASP.NET controls and code in a way that’s suitable
for the user. Returning to the example in Figure 2.1 one more time, let’s focus
on the literal text and HTML tags:

VB.NET

<%@ Page Language="VB" %>
<html>
<head>
<title>Sample Page</title>

<script runat="server">
Sub ShowMessage(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"

39Order the print version of this book to get all 700+ pages!

Server-Side Include Directives

http://www.sitepoint.com/launch/eed6c1

End Sub
</script>

</head>
<body>

<form runat="server">
<%-- Declare the title as string and set it --%>
<asp:Label id="lblMessage" runat="server" />
<% Dim Title As String = "Zak Ruvalcaba's Book List" %>
<%= Title %>
</form>

</body>
</html>

As you can see in the bold code, literal text and HTML tags provide the structure
for presenting our dynamic data. Without them, there would be no format to
the page, and the browser would be unable to understand it.

Now you should understand what the structure of an ASP.NET page looks like.
As you work through the examples in this book, you’ll begin to realize that in
many cases you won’t need to use all these elements. For the most part, all of
your development will be modularized within code declaration blocks. All of the
dynamic portions of your pages will be contained within code render blocks or
controls located inside a <form runat="server"> tag.

In the following sections, we’ll outline the various languages used within ASP.NET,
talk a little about view state, and look at working with directives in more detail.

View State
As I mentioned briefly in the previous section, ASP.NET controls automatically
retain their data when a page is sent to the server by a user clicking a submit
button. Microsoft calls this persistence of data view state. In the past, developers
would have to hack a way to remember the item selected in a drop-down menu
or keep the contents of a text box, typically using a hidden form field. This is no
longer the case; ASP.NET pages, once submitted to the server for processing,
automatically retain all information contained within text boxes, items selected
within drop-down menus, radio buttons, and check boxes. Even better, they keep
dynamically generated tags, controls, and text. Consider the following ASP page,
called sample.asp:

Order the print version of this book to get all 700+ pages!40

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

<html>
<head>
 <title>Sample Page using VBScript</title>
</head>
<body>
<form method="post" action="sample.asp">
 <input type="text" name="txtName"/>
 <input type="Submit" name="btnSubmit" text="Click Me"/>
<%
If Request.Form("txtName") <> "" Then
 Response.Write(Request.Form("txtName"))
End If
%>

</form>
</body>
</html>

If you save this example in the WebDocs subdirectory of wwwroot that you created
in Chapter 1, you can open it in your browser by typing
http://localhost/WebDocs/sample.asp, to see that view state is not automatically
preserved. When the user submits the form, the information that was previously
typed into the text box is cleared, although it is still available in Re-
quest.Form("txtName"). The equivalent page in ASP.NET, ViewState.aspx,
demonstrates data persistence using view state:

VB.NET File: ViewState.aspx

<html>
<head>
<title>Sample Page using VB.NET</title>
<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 lblMessage.Text = txtName.Text
End Sub
</script>
</head>

<body>
<form runat="server">
 <asp:TextBox id="txtName" runat="server" />
 <asp:Button id="btnSubmit" Text="Click Me" OnClick="Click"
 runat="server" />
 <asp:Label id="lblMessage" runat="server" />
</form>

41Order the print version of this book to get all 700+ pages!

View State

http://localhost/WebDocs/sample.asp
http://www.sitepoint.com/launch/eed6c1

</body>
</html>

C# File: ViewState.aspx

<html>
<head>
<title>Sample Page using C#</title>
<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 lblMessage.Text = txtName.Text;
}
</script>
</head>

<body>
<form runat="server">
 <asp:TextBox id="txtName" runat="server" />
 <asp:Button id="btnSubmit" Text="Click Me" OnClick="Click"
 runat="server" />
 <asp:Label id="lblMessage" runat="server" />
</form>
</body>
</html>

In this case, the code uses ASP.NET controls with the runat="server" attribute.
As you can see in Figure 2.2, the text from the box appears on the page when the
button is clicked, but also notice that the data remains in the text box! The data
in this example is preserved because of view state:

Figure 2.2. ASP.NET supports view state. When a page is
submitted, the information within the controls is preserved.

Order the print version of this book to get all 700+ pages!42

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

You can see the benefits of view state already. But where is all that information
stored? ASP.NET pages maintain view state by encrypting the data within a
hidden form field. View the source of the page after you’ve submitted the form,
and look for the following code:

<input type="hidden" name="__VIEWSTATE" value="dDwtMTcyOTAyO
DAwNzt0PDtsPGk8Mj47PjtsPHQ8O2w8aTwzPjs+O2w8dDxwPGw8aW5uZXJodG
1sOz47bDxIZWxsbyBXb3JsZDs+Pjs7Pjs+Pjs+Pjs+d2wl7GlhgweO9LlUihS
FaGxk6t4=" />

This is a standard HTML hidden form field with the value set to the encrypted
data from the form element. As soon as you submit the form for processing, all
information relevant to the view state of the page is stored within this hidden
form field.

View state is enabled for every page by default. If you do not intend to use view
state, you can turn it off, which will result in a slight performance gain in your
pages. To do this, set the EnableViewState property of the Page directive to
false:

<%@ Page EnableViewState="False" %>

Speaking of directives, it’s time we took a closer look at these curious beasts!

Working With Directives
For the most part, ASP.NET pages resemble traditional HTML pages, with a few
additions. In essence, just using an extension like .aspx on an HTML file will
make the .NET Framework process the page. However, before you can work with
certain, more advanced features, you will need to know how to use directives.

We’ve already talked a little about directives and what they can do earlier in this
chapter. You learned that directives control how a page is created, specify settings
when navigating between pages, aid in finding errors, and allow you to import
advanced functionality to use within your code. Three of the most commonly
used directives are:

Page Defines page-specific attributes for the ASP.NET page, such as
the language used.

Import Makes functionality defined elsewhere available in a page
through the use of namespaces. You will become very familiar
with this directive as you progress through this book.

43Order the print version of this book to get all 700+ pages!

Working With Directives

http://www.sitepoint.com/launch/eed6c1

Register Asyou will see in Chapter 16, you would use this directive to
link a user control to the ASP.NET page.

You will become very familiar with these three directives, as they’re the ones that
we’ll be using the most in this book. You’ve already seen the Page directive in
use. The Import directive imports extra functionality for use within your applic-
ation logic. The following example, for instance, imports the Mail class, which
you could use to send email from a page:

<%@ Import Namespace="System.Web.Mail" %>

The Register directive allows you to register a user control for use on your
page. We’ll cover these in Chapter 16, but the directive looks something like this:

<%@ Register TagPrefix="uc" TagName="footer" Src="footer.ascx" %>

ASP.NET Languages
As we saw in the previous chapter, .NET currently supports many different lan-
guages and there is no limit to the number of languages that could be made
available. If you’re used to writing ASP, you may think the choice of VBScript
would be obvious. With ASP.NET however, Microsoft has done away with VB-
Script and replaced it with a more robust and feature-rich alternative: VB.NET.
ASP.NET’s support for C# is likely to find favor with developers from other
backgrounds. This section will introduce you to both these new languages, which
are used throughout the remainder of the book. By the end of this section, you
will, I hope, agree that the similarities between the two are astonishing—any
differences are minor and, in most cases, easy to figure out.

Traditional server technologies are much more constrained in the choice of devel-
opment language they offer. For instance, old-style CGI scripts were typically
written with Perl or C/C++, JSP uses Java, Coldfusion uses CFML, and PHP is
a language in and of itself. .NET’s support for many different languages lets de-
velopers choose based on what they’re familiar with, and start from there. To
keep things simple, in this book we’ll consider the two most popular, VB.NET
and C#, giving you a chance to choose which feels more comfortable to you, or
stick with your current favorite if you have one.

VB.NET
Visual Basic.NET or VB.NET is the result of a dramatic overhaul of Microsoft’s
hugely popular Visual Basic language. With the inception of Rapid Application

Order the print version of this book to get all 700+ pages!44

Chapter 2: ASP.NET Basics

http://www.sitepoint.com/launch/eed6c1

Development (RAD) in the nineties, Visual Basic became extremely popular,
allowing inhouse teams and software development shops to bang out applications
two-to-the-dozen. VB.NET has many new features over older versions of VB,
most notably that it has now become a fully object-oriented language. At last, it
can call itself a true programming language on a par with the likes of Java and
C++. Despite the changes, VB.NET generally stays close to the structured, legible
syntax that has always made it so easy to read, use, and maintain.

C#
The official line is that Microsoft created C# in an attempt to produce a program-
ming language that coupled the simplicity of Visual Basic with the power and
flexibility of C++. However, there’s little doubt that its development was at least
hurried along. Following legal disputes with Sun about Microsoft’s treatment
(some would say abuse) of Java, Microsoft was forced to stop developing its own
version of Java, and instead developed C# and another language, which it calls
J#. We’re not going to worry about J# here, as C# is preferable. It’s easy to read,
use, and maintain, because it does away with much of the confusing syntax for
which C++ became infamous.

 Summary
In this chapter, we started out by introducing key aspects of an ASP.NET page
including directives, code declaration blocks, code render blocks, includes, com-
ments, and controls. As the chapter progressed, you were introduced to the two
most popular languages that ASP.NET supports, which we’ll use throughout the
book.

In the next chapter, we’ll create more ASP.NET pages to demonstrate some form
processing techniques and programming basics, before we finally dive in and look
at object oriented programming for the Web.

45Order the print version of this book to get all 700+ pages!

C#

http://www.sitepoint.com/launch/eed6c1

46

VB.NET and C# Programming
Basics3

As you learned at the end of the last chapter, one of the great things about
ASP.NET is that we can pick and choose which of the various .NET languages
we like. In this chapter, we’ll look at some key programming principles using our
two chosen languages, VB.NET and C#. We’ll start off with a run-down of some
basic programming concepts as they relate to ASP.NET using both languages.
We’ll introduce programming fundamentals such as control and page events,
variables, arrays, functions, operators, conditionals, and loops. Next, we’ll dive
into namespaces and address the topic of classes—how they’re exposed through
namespaces, and which you’ll use most often.

The final sections of the chapter cover some of the ideas underlying modern, ef-
fective ASP.NET design, starting with that of code-behind and the value it
provides by helping us separate code from presentation. We finish with an exam-
ination of how object-oriented programming techniques impact the ASP.NET
developer.

Programming Basics
One of the building blocks of an ASP.NET page is the application logic: the ac-
tual programming code that allows the page to function. To get anywhere with
this, you need to grasp the concept of events. All ASP.NET pages will contain
controls, such as text boxes, check boxes, lists, and more, each of these controls

allowing the user to interact with it in some way. Check boxes can be checked,
lists can be scrolled, items on them selected, and so on. Now, whenever one of
these actions is performed, the control will raise an event. It is by handling these
events with code that we get our ASP.NET pages to do what we want.

For instance, say a user clicks a button on an ASP.NET page. That button (or,
strictly, the ASP.NET Button control) raises an event (in this case it will be the
Click event). When the ASP.NET runtime registers this event, it calls any code
we have written to handle it. We would use this code to perform whatever action
that button was supposed to perform, for instance, to save form data to a file, or
retrieve requested information from a database. Events really are key to ASP.NET
programming, which is why we’ll start by taking a closer look at them. Then,
there’s the messy business of writing the actual handler code, which means we
need to check out some common programming techniques in the next sections.
Specifically, we’re going to cover the following areas:

� Control events and handlers

� Page events

� Variables and variable declaration

� Arrays

� Functions

� Operators

� Conditionals

� Loops

It wouldn’t be practical, or even necessary, to cover all aspects of VB.NET and
C# in this book, so we’re going to cover enough to get you started, completing
the projects and samples using both languages. Moreover, I’d say that the pro-
gramming concepts you’ll learn here will be more than adequate to complete the
great majority of day-to-day Web development tasks using ASP.NET.

Control Events and Subroutines
As I just mentioned, an event (sometimes more than one) is raised, and handler
code is called, in response to a specific action on a particular control. For instance,

Order the print version of this book to get all 700+ pages!48

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

the code below creates a server-side button and label. Note the use of the OnClick
attribute on the Button control:

File: ClickEvent.aspx (excerpt)

<form runat="server">
 <asp:Button id="btn1" runat="server" OnClick="btn1_Click"
 Text="Click Me" />
 <asp:Label id="lblMessage" runat="server" />
</form>

When the button is clicked, it raises the Click event, and ASP.NET checks the
OnClick attribute to find the name of the handler subroutine for that event.
Here, we tell ASP.NET to call the btn1_Click() routine. So now we have to
write this subroutine, which we would normally place within a code declaration
block inside the <head> tag, like this:

VB.NET File: ClickEvent.aspx (excerpt)

<head>
<script runat="server" language="VB">
 Public Sub btn1_Click(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
 End Sub
</script>
</head>

C# File: ClickEvent.aspx (excerpt)

<head>
<script runat="server" language="C#">
 public void btn1_Click(Object s, EventArgs e) {
 lblMessage.Text = "Hello World";
 }
</script>
</head>

This code simply sets a message to display on the label that we also declared with
the button. So, when this page is run and users click the button, they’ll see the
message "Hello World" appear next to it.

I hope you can now start to come to grips with the idea of control events and
how they’re used to call particular subroutines. In fact, there are many events
that your controls can use, some of which are only found on certain controls—not
others. Here’s the complete set of attributes the Button control supports for
handling events:

49Order the print version of this book to get all 700+ pages!

Control Events and Subroutines

http://www.sitepoint.com/launch/eed6c1

OnClick As we’ve seen, the subroutine indicated by this attrib-
ute is called for the Click event, which occurs when
the user clicks the button.

OnCommand As with OnClick, the subroutine indicated by this at-
tribute is called when the button is clicked.

OnLoad The subroutine indicated by this attribute is called
when the button is loaded for the first time—generally
when the page first loads.

OnInit When the button is initialized, any subroutine given
in this attribute will be called.

OnPreRender We can run code just before the button is rendered,
using this attribute.

OnUnload This subroutine will run when the control is unloaded
from memory—basically, when the user goes to a dif-
ferent page or closes the browser entirely.

OnDisposed This occurs when the button is released from memory.

OnDataBinding This fires when the button is bound to a data source.

Don’t worry too much about the intricacies of all these events and when they
happen; I just want you to understand that a single control can produce a number
of different events. In the case of the Button control, you’ll almost always be in-
terested in the Click event, as the others are only useful in rather obscure circum-
stances.

When a control raises an event, the specified subroutine (if there is one) is ex-
ecuted. Let’s now take a look at the structure of a typical subroutine that interacts
with a Web control:

VB.NET

Public Sub mySubName(s As Object, e As EventArgs)
 ' Write your code here
End Sub

C#

public void mySubName(Object s, EventArgs e) {
 // Write your code here
}

Order the print version of this book to get all 700+ pages!50

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

Let’s break down all the components that make up a typical subroutine:

Public Defines the scope of the subroutine. There are a few
different options to choose from, the most frequentlypublic
used being Public (for a global subroutine that can
be used anywhere within the entire page) and Private
(for subroutines that are available for the specific class
only). If you don’t yet understand the difference, your
best bet is to stick with Public for now.

Sub Defines the chunk of code as a subroutine. A sub-
routine is a named block of code that doesn’t returnvoid
a result; thus, in C#, we use the void keyword, which
means exactly that. We don’t need this in VB.NET,
because the Sub keyword already implies that no value
is returned.

mySubName(…) This part gives the name we’ve chosen for the sub-
routine.

s As Object When we write a subroutine that will function as an
event handler, it must accept two parameters. TheObject s
first is the control that generated the event, which is
an Object. Here, we are putting that Object in a
variable named s (more on variables later in this
chapter). We can then access features and settings of
the specific control from our subroutine using the
variable.

e As EventArgs The second parameter contains certain information
specific to the event that was raised. Note that, inEventArgs e
many cases, you won’t need to use either of these two
parameters, so you don’t need to worry about them
too much at this stage.

As this chapter progresses, you’ll see how subroutines associated with particular
events by the appropriate attributes on controls can revolutionize the way your
user interacts with your application.

51Order the print version of this book to get all 700+ pages!

Control Events and Subroutines

http://www.sitepoint.com/launch/eed6c1

Page Events
Until now, we’ve considered only events that are raised by controls. However,
there is another type of event—the page event. The idea is the same as for control
events1, except that here, it is the page as a whole that generates the events.
You’ve already used one of these events: the Page_Load event. This event is fired
when the page loads for the first time. Note that we don’t need to associate
handlers for page events the way we did for control events; instead, we just place
our handler code inside a subroutine with a preset name. The following list out-
lines the page event subroutines that are available:

Page_Init Called when the page is about to be initialized with
its basic settings

Page_Load Called once the browser request has been processed,
and all of the controls in the page have their updated
values.

Page_PreRender Called once all objects have reacted to the browser
request and any resulting events, but before any re-
sponse has been sent to the browser.

Page_UnLoad Called when the page is no longer needed by the
server, and is ready to be discarded.

The order in which the events are listed above is also the order in which they’re
executed. In other words, the Page_Init event is the first event raised by the
page, followed by Page_Load, Page_PreRender, and finally Page_UnLoad.

The best way to illustrate the Page_Load event is through an example:

VB.NET File: PageEvents.aspx (excerpt)

<html>
<head>
<script runat="server" language="VB">
Sub Page_Load(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
End Sub

1Strictly speaking, a page is simply another type of control, and so page events are actually control
events. When you’re first coming to grips with ASP.NET, however, it can help to think of them dif-

ferently, especially since you don’t usually use OnEventName attributes to assign subroutines to
handle them.

Order the print version of this book to get all 700+ pages!52

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblMessage" runat="server" />
</form>
</body>
</html>

C# File: PageEvents.aspx (excerpt)

<html>
<head>
<script runat="server" language="C#">
void Page_Load(Object s, EventArgs e) {
 lblMessage.Text = "Hello World";
}
</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblMessage" runat="server" />
</form>
</body>
</html>

You can see that the control on the page does not specify any event handlers.
There’s no need, because we’re using the special Page_Load subroutine, which
will be called when the page loads. As the page loads, it will call the Page_Load
routine, to display “Hello World” in the Label control, as shown in Figure 3.1.

53Order the print version of this book to get all 700+ pages!

Page Events

http://www.sitepoint.com/launch/eed6c1

Figure 3.1. The Page_Load event is raised, the subroutine is called,
and the code within the subroutine is executed.

Variables and Variable Declaration
Variables are fundamental to programming, and you’ve almost certainly come
across the term before. Basically, they let you give a name, or identifier, to a
piece of data; we can then use that identifier to store, modify, and retrieve the
data.

However, there are, of course, many different kinds of data, such as strings, in-
tegers (whole numbers), and floating point numbers (fractions or decimals). Before
you can use a variable in VB.NET or C#, you must specify what type of data it
can contain, using keywords such as String, Integer, Decimal, and so on, like
this:

VB.NET

Dim strName As String
Dim intAge As Integer

Order the print version of this book to get all 700+ pages!54

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

C#

string strName;
int intAge;

These lines declare what type of data we want our variables to store, and are
therefore known as variable declarations. In VB.NET, we use the keyword Dim,
which stands for “dimension”, while in C#, we simply precede the variable name
with the appropriate data type.

Sometimes, we want to set an initial value for variables that we declare; we can
do this using a process known as initialization:

VB.NET

Dim strCarType As String = "BMW"

C#

string strCarType = "BMW";

We can also declare and/or initialize a group of variables of the same type all at
once:

VB.NET

Dim strCarType As String, strCarColor = "blue", strCarModel

C#

string strCarType, strCarColor = "blue", strCarModel;

Table 3.1 below lists the most useful data types available in VB.NET and C#.

55Order the print version of this book to get all 700+ pages!

Variables and Variable Declaration

http://www.sitepoint.com/launch/eed6c1

Table 3.1. A List of the Commonly Used Data Types

DescriptionC#VB.NET

Whole numbers in the range -2,147,483,648 to
2,147,483,647.

intInteger

Up to 28 decimal places. You’ll use decimal most
often when dealing with costs of items.

decimalDecimal

Any text value.stringString

A single character (letter, number, or symbol).charChar

True or false.boolBoolean

In .NET, all types are ultimately a type of object,
and so variables of this type can hold just about
any kind of data.

ObjectObject

There are many more data types that you may encounter as you progress, but
this list provides an idea of the ones you’ll use most often.

So, to sum up, once you’ve declared a variable as a given type, it can only hold
data of that type. You can’t put a string into an integer variable, for instance.
However, there are frequently times when you’ll need to convert one data type
to another. Have a look at this code:

VB.NET

Dim intX As Integer
Dim strY As String = "35"
intX = strY + 6

C#

int intX;
String strY = "35";
intX = strY + 6;

Now, while you or I might think that this could make sense—after all, the string
strY does contain a number, so we may well wish to add it to another number—the
computer will not be happy, and we’ll get an error. What we have to do is expli-
citly convert, or cast, the string into an integer first:

VB.NET

Dim intX As Integer
Dim strY As String = "35"
intX = Int32.Parse(strY) + 6

Order the print version of this book to get all 700+ pages!56

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

C#

int intX;
String strY = "35";
intX = Convert.ToInt32(strY) + 6;

Now, the computer will be happy, as we’ve told it that we want to turn the string
into an integer before it’s used as one. This same principle holds true when mixing
other types in a single expression.

Arrays
Arrays are a special variety of variable tailored for storing related items of the
same data type. Any one item in an array can be accessed using the array’s name,
followed by that item’s position in the array (its offset). Let’s create a sample
page to show what I mean:

VB.NET File: Arrays.aspx

<html>
<head>
<script runat="server" language="VB">
Sub Page_Load()

 ' Declare an array
 Dim drinkList(4) As String

 ' Place some items in it
 drinkList(0) = "Water"
 drinkList(1) = "Juice"
 drinkList(2) = "Soda"
 drinkList(3) = "Milk"

 ' The line below accesses an item in the array by its position
 lblArrayList.Text = drinkList(1)
End Sub
</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblArrayList" runat="server"/>
</form>
</body>
</html>

57Order the print version of this book to get all 700+ pages!

Arrays

http://www.sitepoint.com/launch/eed6c1

C# File: Arrays.aspx

<html>
<head>
<script runat="server" language="C#">
void Page_Load() {

 // Declare an array
 String[] drinkList = new String[4];

 // Place some items in it
 drinkList[0] = "Water";
 drinkList[1] = "Juice";
 drinkList[2] = "Soda";
 drinkList[3] = "Milk";

 // The line below accesses an item in the array by its position
 lblArrayList.Text = drinkList[1];
}
</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblArrayList" runat="server"/>
</form>
</body>
</html>

There are some important points to pick up from this code. First, notice how we
declare an array. In VB.NET, it looks like a regular declaration for a string, except
that the number of items we want the array to contain is given in brackets after
the name:

VB.NET File: Arrays.aspx (excerpt)

 Dim drinkList(4) As String

In C#, it’s a little different. First, we declare that drinkList is an array by fol-
lowing the datatype with two empty square brackets. We must then specify that
this is an array of four items, using the new keyword:

C# File: Arrays.aspx (excerpt)

 String[] drinkList = new String[4];

A crucial point to realize here is that the arrays in both C# and VB.NET are
what are known as zero-based arrays. This means that the first item actually has

Order the print version of this book to get all 700+ pages!58

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

position 0, the second has position 1, and so on, through to the last item, which
will have a position that’s one less than the size of the array (3, in this case). So,
we specify each item in our array like this:

VB.NET File: Arrays.aspx (excerpt)

 drinkList(0) = "Water"
 drinkList(1) = "Juice"
 drinkList(2) = "Soda"
 drinkList(3) = "Milk"

C# File: Arrays.aspx (excerpt)

 drinkList[0] = "Water";
 drinkList[1] = "Juice";
 drinkList[2] = "Soda";
 drinkList[3] = "Milk";

Notice that C# uses square brackets for arrays, while VB.NET uses standard
parentheses. We have to remember that arrays are zero-based when we set the
label text to the second item, as shown here:

VB.NET File: Arrays.aspx (excerpt)

 lblArrayList.Text = drinkList(1)

C# File: Arrays.aspx (excerpt)

 lblArrayList.Text = drinkList[1];

To help this sink in, you might like to try changing this code to show the third
item in the list instead of the second. Can you work out what change you’d need
to make?

That’s right—you only need to change the number given in the brackets to match
the position of the new item (don’t forget to start at zero). In fact, it’s this ability
to select one item from a list using only its numerical location that makes arrays
so useful in programming, as we’ll see as we get further into the book.

Functions
Functions are exactly the same as subroutines, but for one key difference: they
return a value. In VB.NET, we declare a function using the Function keyword
in place of Sub, while, in C#, we simply have to specify the return type in place
of using void. The following code shows a simple example:

59Order the print version of this book to get all 700+ pages!

Functions

http://www.sitepoint.com/launch/eed6c1

VB.NET File: Functions.aspx

<html>
<head>
<script runat="server" language="VB">

' Here's our function
Function getName() as String
 Return "Zak Ruvalcaba"
End Function

' And now we'll use it in the Page_Load handler
Sub Page_Load(s As Object, e As EventArgs)
 lblMessage.Text = getName()
End Sub
</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblMessage" runat="server" />
</form>
</body>
</html>

C# File: Functions.aspx

<html>
<head>
<script runat="server" language="C#">

// Here's our function
string getName() {
 return "Zak Ruvalcaba";
}

// And now we'll use it in the Page_Load handler
void Page_Load() {
 lblMessage.Text = getName();
}
</script>
</head>

<body>
<form runat="server">
<asp:Label id="lblMessage" runat="server" />
</form>

Order the print version of this book to get all 700+ pages!60

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

</body>
</html>

Figure 3.2 shows the result in the browser.

Figure 3.2. The Page_Load event is raised, the function is called,
and the code within the function is executed.

Here’s what’s happening: the line in our Page_Load subroutine calls our function,
which returns a simple string that we can then assign to our label. I hope this il-
lustrates what functions are about and how you can use them. In this simple ex-
ample, we’re merely returning a fixed string (my name), but the function could
just as well retrieve the name from a database—or somewhere else. The point is
that, regardless of how the function gets its data, we use it (that is, call it) in just
the same way.

61Order the print version of this book to get all 700+ pages!

Functions

http://www.sitepoint.com/launch/eed6c1

When we’re declaring our function, we must remember to specify the correct
return type. Take a look at the following code:

VB.NET

' Here's our function
Function addUp(x As Integer, y As Integer) As Integer
 Return x + y
End Function

' And now we use it in Page_Load
Sub Page_Load(s As Object, e As EventArgs)
 lblMessage.Text = addUp(5, 5).ToString()
End Sub

C#

// Here's our function
int addUp(int x, int y) {
 return x + y;
}

// And now we use it in Page_Load
void Page_Load() {
 lblMessage.Text = Convert.ToString(addUp(5, 5));
}

You can easily adapt the previous example to use this new code and see the results
in your browser.

Have a look at this code, and see if you can spot what’s different and why. The
first thing you might notice is that our function now accepts parameters. Any
function or subroutine can take any number of parameters, each of any type
(there’s no need for parameter types to match the return type—that’s just coin-
cidental in this example).

We can then readily use the parameters inside the function or subroutine just
by using the names we gave them in the function declaration (here, we’ve chosen
x and y, but we could have chosen different names).

The other difference between this and the function declaration we had before is
that we now declare our function with a return type of Integer or int, rather
than String, because we want it to return a whole number.

When we now call the new function, we simply have to specify the required
number of parameters, and remember that the function will return a value with

Order the print version of this book to get all 700+ pages!62

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

the type we specified. In this case, that means we have to convert the integer
value it returns to a string, so we can assign it to the label.

In VB.NET, we tack .ToString() onto the end of the function call, while in C#
we use the Convert.ToString(…). Note the differences in how these two methods
are used—converting numbers to strings is a very common task in ASP.NET, so
it’s good to get a handle on it early. Don’t be too concerned if you’re a little
confused by how these conversions work, though—the syntax will become clear
once we discuss the object oriented concepts involved later in this chapter.

Again, a complete discussion of functions could take up an entire chapter, but I
hope the brief examples here are enough to prepare you for what we’re going to
cover in future chapters. Don’t worry too much if you’re still a bit unsure what
functions and subroutines are all about right now—they’ll become second nature
very quickly.

Operators
Throwing around values with variables and functions isn’t much use unless you
can use them in some meaningful way, and to do this we use operators. An op-
erator is a symbol that has a certain meaning when applied to values. Don’t
worry—they’re nowhere near as scary as they sound! In fact, in the last example,
when our function added two numbers, we were using an operator—the addition
operator, +. Most of the other available operators are just as well known, although
there are one or two that will probably be new to you. Table 3.2 outlines the
operators that you’ll use most often.

63Order the print version of this book to get all 700+ pages!

Operators

http://www.sitepoint.com/launch/eed6c1

Table 3.2. ASP.NET Operators

DescriptionC#VB.NET

greater than>>

greater than or equal to>=>=

less than<<

less than or equal to<=<=

not equal to!=<>

equals===

assigns a value to a variable==

or||Or

and&&And

concatenate strings+&

create object or arrayNewNew

multiply**

divide//

add++

subtract--

The following code uses some of these operators:

VB.NET

If (user = "Zak" And itemsBought <> 0) Then
 lblMessage.Text = "Hello Zak! Do you want to proceed to " & _
 "checkout?"
End If

C#

if (user == "Zak" && itemsBought != 0) {
 lblMessage.Text = "Hello Zak! Do you want to proceed to " +
 "checkout?";
}

Here, we use the equality, inequality (not equals to) and logical ‘and’ operators
in an If statement to print a message only for a given user, and only when he or
she has bought something. Of particular note is C#’s equality operator, ==, which
is used when comparing two values to see if they are equal. Don’t use a single

Order the print version of this book to get all 700+ pages!64

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

equals sign in C# unless you are assigning a value to a variable, or your code will
have a very different meaning than you expect!

Breaking Long Lines of Code

Since the message string in the above example was too long to fit on one line
in this book, I also used the string concatenation operator to combine two
shorter strings on separate lines to form the complete message. In VB.NET,
I also had to break one line of code into two using the line continuation
symbol (_, an underscore at the end of the line to be continued). Since C#
marks the end of each command with a semicolon (;), I can split a single
command over two lines without having to do anything special.

I’ll use these techniques throughout this book to show long lines of code
within a limited page width. Feel free to recombine the lines in your own
code if you like—there is no actual length limit on lines of code in VB.NET
and C#.

Conditional Logic
As you develop ASP.NET applications, there will be many instances in which
you’ll need to perform an action only if a certain condition is met, for instance,
if the user has checked a certain checkbox, selected a certain item from a
DropDownList control, or typed a certain string into a TextBox control.

We check for such things using conditionals, the simplest of which is probably
the If statement. This statement is often used in conjunction with an Else
statement, which specifies what should happen if the condition is not met. So,
for instance, we may wish to check if the name entered in a text box is "Zak," re-
directing to one page if it is, or else redirecting to an error page:

VB.NET

If (txtUsername.Text = "Zak") Then
 Response.Redirect("ZaksPage.aspx")
Else
 Response.Redirect("errorPage.aspx")
End If

C#

if (txtUsername.Text == "Zak") {
 Response.Redirect("ZaksPage.aspx");
} else {
 Response.Redirect("errorPage.aspx");
}

65Order the print version of this book to get all 700+ pages!

Conditional Logic

http://www.sitepoint.com/launch/eed6c1

Often, we want to check for one of many possibilities, and perform a particular
action in each case. In that event, we can use the Switch Case (VB.NET) or
switch (C#) construct:

VB.NET

Dim strName As String = txtUsername.Text
Select Case strName
 Case "Zak"
 Response.Redirect("ZaksPage.aspx")
 Case "Mark"
 Response.Redirect("MarksPage.aspx")
 Case "Fred"
 Response.Redirect("FredsPage.aspx")
 Case Else
 Response.Redirect("errorPage.aspx")
End Select

C#

string strName = txtUsername.Text;
switch (strName) {
 case "Zak":
 Response.Redirect("ZaksPage.aspx");
 break;
 case "Mark":
 Response.Redirect("MarksPage.aspx");
 break;
 case "Fred":
 Response.Redirect("FredsPage.aspx");
 break;
 default:
 Response.Redirect("errorPage.aspx");
 break;
}

Loops
As you’ve just seen, an If statement causes a code block to execute once if the
value of its test expression is true. Loops, on the other hand, cause a code block
to execute repeatedly for as long as the test expression remains true. There are
two basic kinds of loop:

� While loops, also called Do loops, which sounds like something Betty Boop
might say!

Order the print version of this book to get all 700+ pages!66

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

� For loops, including For Next and For Each

A While loop is the simplest form of loop; it makes a block of code repeat for as
long as a particular condition is true. Here’s an example:

VB.NET

Dim Counter As Integer = 0

Do While Counter <= 10

 ' Convert out Integer to a String
 lblMessage.Text = Counter.ToString()

 ' Below we use the += operator to increase our variable by 1
 Counter += 1
Loop

C#

int counter = 0;

while (counter <= 10) {

 // Below we use a sneaky way to convert our int to a string
 lblMessage.Text = counter + "";

 // C# has the operator ++ to increase a variable by 1
 counter++;
}

You can try out this code—enter it inside a Page_Load subroutine of one of the
pages you’ve already created. The page illustrating Page_Load at the start of this
chapter would be ideal. Make sure you remove any other code in the subroutine,
and that there is an ASP.NET Label control in the HTML of the page with the
ID lblMessage. When you open the page, the label will be set to show the
number 0, then 1, then 2, all the way to 10. Of course, since all this happens in
Page_Load (i.e. before any output is sent to the browser), you’ll only see the last
value assigned, 10.

This demonstrates that the loop repeats until the condition is no longer met. Try
changing the code so that the counter variable is initialized to 20 instead of 10.
When you open the page now, you won’t see anything on screen, because the loop
condition was never met.

67Order the print version of this book to get all 700+ pages!

Loops

http://www.sitepoint.com/launch/eed6c1

There is another form of the While loop, called a Do While loop, which checks
if the condition has been met at the end of the code block, rather than at the be-
ginning:

VB.NET

Dim Counter As Integer = 0

Do

 ' Convert our Integer to a String
 lblMessage.Text = Counter.toString()

 ' Below we use the += operator to increase our variable by 1
 Counter += 1
Loop While Counter <= 10

C#

int counter = 0;

do {

 // Below we use a sneaky way to convert our int to a string
 lblMessage.Text = counter + "";

 // C# has the operator ++ to increase a variable by 1
 counter++;
} while (counter <= 10);

If you run this code, you’ll see it provides the exact same output we saw when
we tested the condition before the code block. However, we can see the crucial
difference if we again change it so the counter variable is initialized to 20. In this
case, we will, in fact, see 20 on screen, because the loop code is executed once
before the condition is even checked! There are some instances when this is just
what we want, so being able to place the condition at the end of the loop can be
very handy.

A For loop is similar to a While loop, but is typically used when the number of
times we need it to execute is known beforehand. The following example displays
the count of items within a DropDownList control called ddlProducts:

VB.NET

Dim i As Integer
For i = 1 To ddlProducts.Items.Count
 lblMessage.Text = i.toString()
Next

Order the print version of this book to get all 700+ pages!68

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

C#

int i;
for (i = 1; i <= ddlProducts.Items.Count; i++) {
 lblMessage.Text = Convert.ToString(i);
}

In VB.NET, the loop syntax specifies the starting and ending values for our
counter variable in the For statement itself. In C#, we assign a starting value (i
= 1), a condition to be tested each time through the loop, just like a While loop
(i <= ddlProducts.Items.Count), and how the counter variable should be in-
cremented after each loop (i++). While this allows for some powerful variations
on the theme in C#, it can be confusing at first. In VB.NET, the syntax is con-
siderably simpler, but can be a bit limiting in exceptional cases.

The other type of For loop is For Each, which loops through every item within
a collection. The following example loops through an array called arrayName:

VB.NET

For Each item In arrayName
 lblMessage.Text = item
Next

C#

foreach (string item in arrayName) {
 lblMessage.Text = item;
}

You may also come across instances in which you need to exit a loop prematurely.
In this case, you would use Exit (VB.NET) or break (C#) to terminate the loop:

VB.NET

Dim i As Integer
For i = 0 To 10
 If (i = 5) Then
 Response.Write("Oh no! Not the number 5!!")

Exit For
 End If
Next

C#

int i;
for (i = 0; i <= 10; i++) {
 if (i == 5) {
 Response.Write("Oh no! Not the number 5!!");

break;

69Order the print version of this book to get all 700+ pages!

Loops

http://www.sitepoint.com/launch/eed6c1

 }
}

In this case, as soon as our For loop hits 5, it displays a warning message, using
the Response.Write() method that will be familiar to those with past ASP ex-
perience, and exits the loop so that no further passes through the loop will be
made.

Although we have only scratched the surface, VB.NET and C# provide a great
deal of power and flexibility to the Web developer, and time spent learning the
basics now will more than pay off in the future.

Understanding Namespaces
Because ASP.NET is part of the .NET Framework, we have access to all the
goodies that are built into it in the form of the .NET Framework Class Library.
This library represents a huge resource of tools and features in the form of classes,
all organized in a hierarchy of namespaces. When we want to use certain features
that .NET provides, we have only to find the namespace that contains that
functionality, and import that namespace into our ASP.NET page. Once we’ve
done that, we can make use of the .NET classes in that namespace to achieve
our own ends.

For instance, if we wanted to access a database from a page, we would import
the namespace that contains classes for this purpose, which happens to be the
System.Data.OleDb namespace. The dots (.) here indicate different levels of the
hierarchy I mentioned—in other words, the System.Data.OleDb namespace is
grouped within the System.Data namespace, which in turn is contained in the
System namespace.

To import a particular namespace into an ASP.NET page, we use the Import
directive. Consider the following excerpt from an ASP.NET page; it imports the
System.Data.OleDb namespace, which contains classes called OleDbConnection,
OleDbCommand, and OleDbDataReader. Importing the namespace lets us use these
classes in a subroutine to display records from an Access database:

VB.NET

<%@ Import Namespace="System.Data.OleDb" %>
<html>
<head>
<script runat="server" language="VB">
Sub ReadDatabase(s As Object, e As EventArgs)
 Dim objConn As New OleDbConnection(_

Order the print version of this book to get all 700+ pages!70

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Database\books.mdb")
 Dim objCmd As New OleDbCommand("SELECT * FROM BookList", _
 objConn)
 Dim drBooks As OleDbDataReader

 objConn.Open()
 drBooks = objCmd.ExecuteReader()
 While drBooks.Read()
 Response.Write("")
 Response.Write(drBooks("Title"))
 End While
 objConn.Close()
End Sub
</script>
</head>

C#

<%@ Import Namespace="System.Data.OleDb" %>
<html>
<head>
<script runat="server" language="C#">
void ReadDatabase(Object s, EventArgs e) {
OleDbConnection objConn = new OleDbConnection(

 "Provider=Microsoft.Jet.OLEDB.4.0;" +
 "Data Source=C:\\Database\\books.mdb");
OleDbCommand objCmd = new OleDbCommand("SELECT * FROM BookList",

 objConn);
OleDbDataReader drBooks;

 objConn.Open();
 drBooks = objCmd.ExecuteReader();
 while (drBooks.Read()) {
 Response.Write("");
 Response.Write(drBooks["Title"]);
 }
 objConn.Close();
}
</script>
</head>

Don’t worry too much about the code right now (we cover this in detail in
Chapter 6). Suffice it to say that, as we’ve imported that namespace, we have
access to all the classes that it contains, and we can use them to get information
from an Access database for display on our page.

71Order the print version of this book to get all 700+ pages!

Understanding Namespaces

http://www.sitepoint.com/launch/eed6c1

Specifically, the classes from System.Data.OleDb that are used in the above code
are:

OleDbConnection Used for connecting to the database

OleDbCommand Used for creating a statement of contents to read from
the database.

OleDbConnection Used for connecting to the database

OleDbCommand Used for creating a statement of contents to read from
the database

OleDbDataReader Used for actually reading contents from database

Object Oriented Programming Concepts
VB.NET and C# are great programming languages because they offer a structured
way of programming. By structured, I mean that code is separated into modules,
where each module defines classes that can be imported and used in other mod-
ules. Both languages are relatively simple to get started with, yet offer features
sophisticated enough for complex, large-scale enterprise applications.

The languages’ ability to support more complex applications—their scalabil-
ity—stems from the fact that both are object oriented programming (OOP)
languages. But ask a seasoned developer what OOP really is, and they’ll start
throwing out buzzwords and catch phrases that are sure to confuse you—terms
like polymorphism, inheritance, and encapsulation. In this section, I aim to
explain the fundamentals of OOP and how good OOP style can help you develop
better, more versatile Web applications down the road. This section will provide
a basic OOP foundation angled towards the Web developer. In particular, we’ll
cover the following concepts:

� Objects

� Properties

� Methods

� Classes

� Scope

Order the print version of this book to get all 700+ pages!72

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

� Events

� Inheritance

Objects
In OOP, one thinks of programming problems in terms of objects, properties,
and methods. The best way to get a handle on these terms is to consider a real
world object and show how it might be represented in an OOP program. Many
books use the example of a car to introduce OOP. I’ll try to avoid that analogy
and use something friendlier: my dog, an Australian Shepherd named Rayne.

Rayne is your average great, big, friendly, loving, playful mutt. You might describe
him in terms of his physical properties: he’s gray, white, brown, and black, stands
roughly one and a half feet high, and is about three feet long. You might also
describe some methods to make him do things: he sits when he hears the command
"Sit", lies down when he hears the command "Lie down", and comes when his
name is called.

So, if we were to represent Rayne in an OOP program, we’d probably start by
creating a class called Dog. A class describes how certain types of objects look
from a programming point of view. When we define a class, we must define the
following two things:

Properties Properties hold specific information relevant to that class
of object. You can think of properties as characteristics of
the objects that they represent. Our Dog class might have
properties such as Color, Height, and Length.

Methods Methods are actions that objects of the class can be told
to perform. Methods are subroutines (if they don’t return
a value) or functions (if they do) that are specific to a given
class. So the Dog class could have methods such as sit(),
and lie_down().

Once we’ve defined a class, we can write code that creates objects of that class,
using the class a little like a template. This means that objects of a particular
class expose (or make available) the methods and properties defined by that class.
So, we might create an instance of our Dog class called Rayne, set its properties
accordingly, and use the methods defined by the class to interact with Rayne, as
shown in Figure 3.3.

73Order the print version of this book to get all 700+ pages!

Objects

http://www.sitepoint.com/launch/eed6c1

Figure 3.3. The methods defined by the class interact with the
object.

This is just a simple example to help you visualize what OOP is all about. In the
next few sections, we’ll cover properties and methods in greater detail, talk about
classes and class instances, scope, events, and even inheritance.

Properties
As we’ve seen, properties are characteristics shared by all objects of a particular
class. In the case of our example, the following properties might be used to describe
any given dog:

� Color

� Height

� Length

In the same way, the more useful ASP.NET Button class exposes properties in-
cluding:

Order the print version of this book to get all 700+ pages!74

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

� Width

� Height

� ID

� Text

� ForeColor

� BackColor

Unfortunately for me, if I get sick of Rayne’s color, I can’t change it. ASP.NET
objects, on the other hand, let us change their properties very easily in the same
way that we set variables. For instance, we’ve already used properties when setting
text for the Label control, which is actually an object of class Label in the
namespace System.Web.UI.WebControls:

VB.NET

lblMyText.Text = "Hello World"

C#

lblMyText.Text = "Hello World";

In this example, we’re using a Label control called lblMyText. Remember,
ASP.NET is all about controls, and, as it’s built on OOP, all control types are
represented as classes. In fact, as you’ll learn in Chapter 4, all interaction with
ASP.NET pages is handled via controls. When we place a control on a page, we
give it a name through its id attribute, and this ID then serves as the name of
the control. Rayne is an object. His name, or ID, is Rayne. Rayne has a height
of eighteen inches. The same holds true for the Label control. The Label control’s
name or ID in the previous example is lblMyText. Next, we use the dot operator
(.) to access the property Text that the object exposes and set it to the string
"Hello World."

Methods
With our dog example, we can make a particular dog do things by calling com-
mands. If I want Rayne to sit, I tell him to sit. If I want Rayne to lie down, I tell
him to lie down. In object oriented terms, I tell him what I want him to do by
calling a predefined command or method, and a resulting action is performed.
In VB.NET or C#, we would write this as rayne.Sit(), or rayne.LieDown().

75Order the print version of this book to get all 700+ pages!

Methods

http://www.sitepoint.com/launch/eed6c1

As Web developers, we frequently call methods when a given event occurs. For
instance, the example earlier in this chapter that took information from an Access
database created an object called objConn to represent the connection to the
database. We then opened the connection by calling the Open() method on that
object as follows:

VB.NET

Dim objConn As As New OleDbConnection(
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Database\books.mdb")
…
objConn.Open()

We say that the Open() method is exposed by the connection object, and that
we’re calling the Open() method on the OleDbConnection object stored in
objConn. We don’t need to know what dark secrets the method uses to do its
magic; all we need to know is its name and what we use it for.

Classes
You can think of a class as a template for building as many objects as you like of
a particular type. When you create an instance of a class, you are creating an
object of that class, and the new object has all the characteristics and behaviors
(properties and methods) defined by the class.

In our dog example, Rayne was an instance of the Dog class as shown in Figure 3.4.

Order the print version of this book to get all 700+ pages!76

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

Figure 3.4. A class serves as the blueprint for an object.

We see that Rayne is an object of class Dog. In our code, we could create a new
instance of the Dog class, call it rayne, and use all the properties and methods
exposed by the object.

In OOP, when we create new instances of a class, we say we’re instantiating
that class. For instance (no pun intended!), if we need to programmatically create
a new instance of the Button control class, we could write the following code:

VB.NET

Dim myButton As New Button()

C#

Button myButton = new Button();

As you can see, we’ve essentially created a new object called myButton from the
Button class. We can then access the properties and methods that the Button
exposes through our new instance:

VB.NET

myButton.Text = "Click Me!"

C#

myButton.Text = "Click Me!";

77Order the print version of this book to get all 700+ pages!

Classes

http://www.sitepoint.com/launch/eed6c1

Scope
You should now have a concept of programming objects as entities that exist in
a program and are manipulated through the methods and properties they expose.
However, in some cases, we want to create methods to use inside our class, which
are not available when that class is used in code. Let’s return to the Dog class to
illustrate.

Imagine we’re writing the Sit() method inside this class, and we realize that
before the dog can sit, it has to shuffle its back paws forward a little (Just bear
with me on this one…)! We could create a method called ShufflePaws(), then
call that method from inside the Sit() method. However, we don’t want code
in an ASP.NET page or in some other class to call this method—it’d just be silly.
We can prevent this by controlling the scope of that method.

The two types of scope available in VB.NET and C# that you should know about
are:

Public Defining a property or method of a class as public allows that
property or method to be called from outside the class itself. In
other words, if an instance of this class is created inside another
object (remember, too, that ASP.NET pages themselves are ob-
jects), public methods and properties are freely available to the
code that created it. This is the default scope in VB.NET and C#
classes.

Private If a property or method of a class is private, it cannot be used
from outside the class itself. If an instance of this class is created
inside an object of a different class, the creating object has no
access to private methods or properties of the created object.

Events
We’ve covered events fairly well already. To sum up, events occur when a control
object sends a message in response to some change that has happened to it.
Generally, these changes occur as the result of user interaction with the control
in the browser. For instance, when a button is clicked, a Click event is raised,
and we can handle that event to perform some action. The object that triggers
the event is referred to as the event sender, while the object that receives the
event is referred to as the event receiver. You’ll learn more about these terms
in Chapter 4.

Order the print version of this book to get all 700+ pages!78

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

Understanding Inheritance
The term inheritance refers to the ability for one class to use properties and
methods exposed by another class.

In our dog example, we first created a class called Dog, then created instances of
that class to represent individual dogs such as Rayne. However, dogs are types
of animals, and many characteristics of dogs are shared by all (or most) animals.
For instance, Rayne has four legs, two ears, one nose, two eyes, etc. It might be
better, then, for us to create a base class called Animal. When we then define
the Dog class, it would inherit from the Animal class, and all public properties
and methods of Animal would be available to instances of the Dog class.

Similarly, we could create a new class based on the Dog class. In programming
circles, this is called deriving a subclass from Dog. For instance, we might create
a class for Australian Shepherd and one for my other dog Amigo, called Chihua-
hua, both of which would inherit the properties and methods of the Dog base
class, and define new ones specific to each breed.

Don’t worry too much if this is still a little unclear. The best way to appreciate
inheritance is to see it used in a real program. The most obvious use of inheritance
in ASP.NET comes with the technique of code-behind.

Separating Code From Content With
Code-Behind

Most companies that employ development teams usually split projects into two
groups, visual design and functional development, because software engineers
are usually poor designers, and designers are often poor engineers. Until now,
our ASP.NET pages have contained code render blocks that place VB.NET or
C# code directly within the ASP.NET page. The problem with this approach is
that there is no separation between the presentational elements of the page and
the application logic. Traditional ASP was infamous for creating “spaghetti” code,
which was scattered and intertwined throughout the presentation elements. This
made it very tricky to manage the code between development teams, as you’ll
know if you’ve ever tried to pick apart someone else’s ASP code. In response to
these problems, ASP.NET introduces a new way of developing pages that allows
code developers to work separately from the presentational designers who lay
out individual pages.

79Order the print version of this book to get all 700+ pages!

Understanding Inheritance

http://www.sitepoint.com/launch/eed6c1

This new method, called code-behind, keeps all of your presentational elements
(controls) inside the .aspx file, but moves all your code to a separate class in a
.vb or .cs code-behind file. Consider the following ASP.NET page, which displays
a simple button and label:

VB.NET

<html>
<head>
 <title>Sample Page using VB.NET</title>
 <script runat="server" language="VB">
 Sub Click(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
 End Sub
 </script>
</head>

<body>
 <form runat="server">
 <asp:Button id="btnSubmit" Text="Click Me" runat="server"
 OnClick="Click" />

<asp:Label id="lblMessage" runat="server" />
 </form>
</body>
</html>

C#

<html>
<head>
 <title>Sample Page using C#</title>
 <script runat="server" language="C#">
 void Click(Object s, EventArgs e) {
 lblMessage.Text = "Hello World";
 }
 </script>
</head>

<body>
 <form runat="server">
 <asp:Button id="btnSubmit" Text="Click Me" runat="server"
 OnClick="Click" />

<asp:Label id="lblMessage" runat="server" />
 </form>
</body>
</html>

Order the print version of this book to get all 700+ pages!80

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

Let’s see how this example could be separated into the following two distinct
files:

sample.aspx layout, presentation, and static content

sample.vb code-behind files containing a custom page class
sample.cs

First, we take all the code and place it in the code-behind file (sample.vb or
sample.cs). This file is a pure code file, and contains no HTML or other markup
tags. What it does contain is a class definition. Nevertheless, we can still access
presentation elements from this file, using their IDs, such as lblMessage:

VB.NET File: sample.vb

' First off we import some useful namespaces
Imports System
Imports System.Web.UI
Imports System.Web.UI.WebControls

' All code-behind classes generally inherit from Page
Public Class Sample
 Inherits Page

 ' Declare the presentation elements on the ASPX page
 Protected WithEvents lblMessage As Label
 Protected WithEvents btnSubmit As Button

 ' Here's the Click handler just as it appeared before
 Sub Click(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
 End Sub
End Class

C# File: sample.cs

// First off we import some useful namespaces
using System;
using System.Web.UI;
using System.Web.UI.WebControls;

// All code-behind classes generally inherit from Page
public class Sample : Page
{
 // Declare the presentation elements on the ASPX page
 protected Label lblMessage;
 protected Button btnSubmit;

81Order the print version of this book to get all 700+ pages!

Separating Code From Content With Code-Behind

http://www.sitepoint.com/launch/eed6c1

 // Here's the Click handler just as it appeared before
 public void Click(Object s, EventArgs e) {
 lblMessage.Text = "Hello World";
 }
}

Without code, the main ASP.NET page becomes much simpler:

VB.NET File: sample.aspx

<%@ Page Inherits="Sample" Src="Sample.vb" %>
<html>
<head>
 <title>Sample Page using VB.NET</title>
</head>

<body>
 <form runat="server">
 <asp:Button id="btnSubmit" Text="Click Me" runat="server"
 OnClick="Click" />

<asp:Label id="lblMessage" runat="server" />
 </form>
</body>
</html>

C# File: sample.aspx

<%@ Page Inherits="Sample" Src="Sample.cs" %>
<html>
<head>
 <title>Sample Page using C#</title>
</head>

<body>
 <form runat="server">
 <asp:Button id="btnSubmit" Text="Click Me" runat="server"
 OnClick="Click" />

<asp:Label id="lblMessage" runat="server" />
 </form>
</body>
</html>

As you can see, the only line that’s different between the .aspx pages is the Page
directive:

Order the print version of this book to get all 700+ pages!82

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

VB.NET File: sample.aspx (excerpt)

<%@ Page Inherits="Sample" Src="Sample.vb" %>

C# File: sample.aspx (excerpt)

<%@ Page Inherits="Sample" Src="Sample.cs" %>

The only real change between the VB.NET and C# versions of the page is the
source filename extension. In both cases, the page inherits from the class Sample.

The code-behind file is written differently from what you’re used to seeing so far.
While we no longer need <script> tags, we find a class definition in its place.
Looking at the VB.NET example, we start with three lines that import namespaces
to be used in the code:

VB.NET File: sample.aspx (excerpt)

Imports System
Imports System.Web.UI
Imports System.Web.UI.WebControls

The next lines create a new class, named Sample. Because our code-behind page
contains code for an ASP.NET page, our class inherits from the Page class:

VB.NET File: sample.aspx (excerpt)

Public Class Sample
 Inherits Page

This is the practical application of inheritance that I mentioned above. Instead
of using the built-in Page class, the code-behind method has you derive a subclass
of Page for each page in your site. Next, we have to declare the controls that we
want to use from the .aspx page—if we forget this step, we won’t be able to access
them from our code:

VB.NET File: sample.aspx (excerpt)

 Protected WithEvents lblMessage As Label
 Protected WithEvents btnSubmit As Button

Finally, we create the Click subroutine just as before, and terminate the class:

VB.NET File: sample.aspx (excerpt)

 Sub Click(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
 End Sub
End Class

83Order the print version of this book to get all 700+ pages!

Separating Code From Content With Code-Behind

http://www.sitepoint.com/launch/eed6c1

As I hope you can see, code-behind files are reasonably easy to work with, and
they can make managing and using our pages much more straightforward. On a
typical project, I tend to use code-behind files quite frequently, but for simplicity’s
sake, we’ll stick with code declaration blocks for at least the next few chapters.

Summary
Phew! That’s quite a few concepts to understand over the course of a single
chapter. Don’t worry—with a little practice, these concepts will become second
nature. I hope you leave this chapter with a basic understanding of programming
concepts as they relate to the Web developer. The next chapter will begin to put
all the concepts that we’ve covered so far into practice, beginning by covering
HTML Controls, Web Forms, and Web Controls, before launching into our first
hands-on project.

Order the print version of this book to get all 700+ pages!84

Chapter 3: VB.NET and C# Programming Basics

http://www.sitepoint.com/launch/eed6c1

Web Forms and Web Controls4
At the heart of ASP.NET is its ability to create dynamic form content. Whether
you’re creating a complex shopping cart application, or a simple page to collect
user information and send the results out via email, Web Forms have a solution.
They allow you to use HTML controls and Web controls to create dynamic pages
with which users can interact. In this chapter, you will learn how Web Forms,
HTML controls, and Web controls, in conjunction with VB.NET and C# code,
should change the way you look at, and develop for, the Web. In this chapter I’ll
introduce you to the following concepts:

� HTML controls

� Web Forms

� Web controls

� Handling page navigation

� Formatting controls with CSS

Toward the end of the chapter, you’ll put all of these concepts to work into a
real world application! I’ll introduce the Dorknozzle Intranet Application that
you’ll be building throughout this book, and see how what you learned in this
chapter can be applied to some of the pages for the project.

Working with HTML Controls
HTML controls are outwardly identical to plain old HTML 4.0 tags, but employ
the runat="server" attribute. For each of HTML’s most common tags, a corres-
ponding server-side HTML control exists, although Microsoft has added a few
tags and some extra properties for each. Creating HTML controls is easy—we
simply stick a runat="server" attribute on the end of a normal HTML tag to
create the HTML control version of that tag. The complete list of current HTML
control classes and their associated tags is given in Table 4.1.

These HTML control classes are all contained within the
System.Web.UI.HtmlControls namespace.

Because HTML controls are processed on the server side by the ASP.NET runtime,
we can easily access their properties through code elsewhere in the page. If you’re
familiar with JavaScript, HTML, and CSS, then you’ll know that manipulating
text within HTML tags, or even manipulating inline styles within an HTML tag,
can be cumbersome and error-prone. HTML controls aim to solve this by allowing
you to manipulate the page easily with your choice of .NET language, for instance,
using VB.NET or C#. We’ll start by looking at the HTML controls library, then
we’ll explore in more detail the properties exposed by the controls when we process
a simple form containing HTML controls and code.

Order the print version of this book to get all 700+ pages!86

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Table 4.1. HTML Control Classes

Associated TagsClass

HtmlAnchor

<button runat="server">HtmlButton

<form runat="server">HtmlForm

HtmlImage

<input type="submit" runat="server">
<input type="reset" runat="server">
<input type="button" runat="server">

HtmlInputButton

<input type="checkbox" runat="server">HtmlInputCheckBox

<input type="file" runat="server">HtmlInputFile

<input type="hidden" runat="server">HtmlInputHidden

<input type="image" runat="server">HtmlInputImage

<input type="radio" runat="server">HtmlInputRadioButton

<input type="text" runat="server">HtmlInputText

<select runat="server">HtmlSelect

<table runat="server">HtmlTable

<tr runat="server">HtmlTableRow

<td runat="server">
<th runat="server">

HtmlTableCell

<textarea runat="server">HtmlTextArea

All other HTML tags, including

<div runat="server">
<body runat="server">

HtmlGenericControl

HtmlAnchor

The HtmlAnchor control creates a server-side HTML tag.

87Order the print version of this book to get all 700+ pages!

HtmlAnchor

http://www.sitepoint.com/launch/eed6c1

Click Here

This line would create a new hyperlink with the text “Click Here.” Once the link
is clicked, the user would be redirected to somepage.aspx as given by the href
attribute.

HtmlButton

The HtmlButton control creates a server-side HTML <button> tag.

<button id="myButton" OnServerClick="Click" runat="server">Click
Here</button>

Notice that we’re using events here. On HTML controls, we need to use OnServer-
Click to specify the ASP.NET handler for clicks on the button, because onclick
is reserved for handling clicks with JavaScript on the client side. In this example,
the handler subroutine is called Click, and would be declared in a script block
with the same form as the Click handlers we looked at for <asp:Button> tags
previously:

VB.NET

<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 Response.Write(myButton.ID)
End Sub
</script>

C#

<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 Response.Write(myButton.ID);
}
</script>

In this case, when the user clicks the button, the ServerClick event is raised,
the Click() subroutine is called to handle it, and the ID of the HtmlButton
control is written onto the screen with Response.Write() (the Write() method
of the Response object).

HtmlForm

The HtmlForm control creates a server-side <form> tag. Most HTML controls,
Web controls, etc., must be placed inside an HtmlForm control.

Order the print version of this book to get all 700+ pages!88

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

<form runat="server">
<!-- ASP.NET controls in here -->
</form>

HtmlImage

The HtmlImage control creates a server-side tag. The following code shows
how we might place an HtmlImage control on a page, along with an HtmlButton:

<button id="myButton" runat="server" OnServerClick="Click">Click
Here</button>

The user could change this image dynamically by pressing the button if we add
code as follows:

VB.NET

<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 myimage.Src = "welcome.gif"
End Sub
</script>

C#

<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 myimage.Src = "welcome.gif";
}
</script>

What will happen if these controls are placed on a page along with the script
block? First of all, the image arrow.gif will appear. When the HtmlButton
control is clicked, it changes to welcome.gif. Behind the scenes, the ServerClick
event is raised when the button is clicked, thus the Click() subroutine is called,
and the Src property of the HtmlImage control is changed from arrow.gif to
welcome.gif.

HtmlGenericControl

The HtmlGenericControl creates a server-side control for HTML tags that do
not have an HTML control associated with them. Perfect examples of this are
the and <div> tags. The following example illustrates how you can

89Order the print version of this book to get all 700+ pages!

HtmlImage

http://www.sitepoint.com/launch/eed6c1

modify text within a tag to change the content from I like ASP.NET to
Why would anyone need PHP? dynamically.

I like ASP.NET

<button id="myButton" runat="server" OnServerClick="Click">Click
Here</button>

We simply add the following code to respond to the ServerClick event and
change the text:

VB.NET

<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 myGenericControl.InnerText = "Why would anyone need PHP?"
End Sub
</script>

C#

<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 myGenericControl.InnerText = "Why would anyone need PHP?";
}
</script>

HtmlInputButton

The HtmlInputButton control creates a server-side <input type="submit">,
<input type="reset">, or <input type="button"> HTML tag.

<input type="submit" value="Click Here" runat="server" />

<input type="reset" value="Click Here" runat="server" />

<input type="button" value="Click Here" runat="server" />

As with HtmlButton, you can assign a server-side event handler to controls of
this type with the OnServerClick attribute.

HtmlInputCheckBox

The HtmlInputCheckBox control creates a server-side <input type="checkbox">
HTML tag.

Order the print version of this book to get all 700+ pages!90

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

<input type="checkbox" id="cb1" value="ASP.NET" runat="server"
 />ASP.NET

<input type="checkbox" id="cb2" value="PHP" runat="server"
 />PHP

<input type="checkbox" id="cb3" value="JSP" runat="server"
 />JSP

<input type="checkbox" id="cb4" value="CGI" runat="server"
 />CGI

<input type="checkbox" id="cb5" value="Coldfusion" runat="server"
 />Coldfusion

The HtmlInputCheckBox control is the perfect choice when you want to allow
your users to select multiple items from a list.

HtmlInputFile

The HtmlInputFile control creates a server-side <input type="file"> tag in
the HTML. This displays a text box and Browse button to allow users to upload
files from ASP.NET pages. There is no Web control equivalent for this tag, so
it’s typically required when working with file uploads—even with Web Forms
(which we’ll discuss shortly).

<input type="file" id="fileUpload" runat="server" />

HtmlInputHidden

The HtmlInputHidden control creates a server-side <input type="hidden"> tag.

<input type="hidden" id="hiddenField" runat="server" />

Try viewing the source of any one of your ASP.NET pages from your browser,
and you’re likely to find this tag being used to store view state information.

HtmlInputImage

The HtmlInputImage control creates a server-side <input type="image"> tag.

<input type="image" id="imgMap" runat="server"
 src="ButtonImage.jpg" />

This tag provides an alternative to the HtmlInputButton control. They both
function in the same way; the difference is that the HtmlInputImage control uses
a custom image rather than the beveled gray Windows-style button. The mouse

91Order the print version of this book to get all 700+ pages!

HtmlInputFile

http://www.sitepoint.com/launch/eed6c1

coordinates are also sent along with the form submission when the user clicks a
control of this type.

HtmlInputRadioButton

The HtmlInputRadioButton control creates a server-side radio button. The fol-
lowing code, for instance, offers a choice of Male or Female:

Gender?

<input type="radio" id="radio1" runat="server" />Male

<input type="radio" id="radio2" runat="server" />Female

Similar to the HtmlInputCheckBox control, the HtmlInputRadioButton control
creates a list of items for users to choose from. The difference, however, is that
the user is only able to select one item at a time.

HtmlInputText

The HtmlInputText control creates a server-side <input type="text"> or <input
type="password"> tag.

Please Login

Username:

<input type="text" id="username" runat="server" />

Password:

<input type="password" id="password" runat="server" />

The preceding code creates a typical login screen layout.

HtmlSelect

The HtmlSelect control creates a server-side version of the <select> tag for
creating drop-down lists or list boxes. The following code creates a drop-down
menu:

Select your favorite movie:

<select id="selectMovie" runat="server">
<option>Star Wars</option>
<option>Spider Man</option>
<option>The Godfather</option>
<option>Lord of the Rings</option>
</select>

Order the print version of this book to get all 700+ pages!92

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

The following code creates a multiple-selection list box:

Which of these movies do you like?

<select id="selectMovie" runat="server" multiple="true" size="4">
<option>Star Wars</option>
<option>Spider Man</option>
<option>The Godfather</option>
<option>Lord of the Rings</option>
</select>

You’ll notice the <option> tag within the main <select> tag; this is used to de-
note each item to appear in the list box or drop-down menu.

HtmlTable, HtmlTableRow and HtmlTableCell
The HtmlTable, HtmlTableRow, and HtmlTableCell controls create server-side
versions of the <table>, <tr>, <td>, and <th> tags. The following code creates
a server-side table:

<table id="myTable" border="1" cellspacing="0" cellpadding="0"
runat="server">
<tr runat="server" id="row1">
<td runat="server" id="cell1">Table Data 1</td>
<td runat="server" id="cell2">Table Data 2</td>
</tr>
<tr runat="server" id="row2">
<td runat="server" id="cell3">Table Data 3</td>
<td runat="server" id="cell4">Table Data 4</td>
</tr>
</table>
<button id="myButton" OnServerClick="Click" runat="server">Click
Here</button>

You could add the following code to respond to the Click event raised by the
HtmlButton control and change the content of the first cell to read "Hello World."

VB.NET

<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 cell1.InnerText = "Hello World"
End Sub
</script>

93Order the print version of this book to get all 700+ pages!

HtmlTable, HtmlTableRow and HtmlTableCell

http://www.sitepoint.com/launch/eed6c1

C#

<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 cell1.InnerText = "Hello World";
}
</script>

HtmlTextArea

The HtmlTextArea control creates a server-side version of the <textarea> tag.

<textarea cols="60" rows="10" runat="server"></textarea>

We’ve glanced only briefly over the HTML controls, as they should all be fairly
familiar from your experience with HTML. But if you’d like more information
on the HTML controls including the properties, methods, and events for each,
see Appendix A.

Processing a Simple Form
Now that you have a basic understanding of ASP.NET page structure, the lan-
guages VB.NET and C#, and HTML controls, let’s put everything together and
create a simple ASP.NET application. The application that we will create, in
VB.NET and C#, will be a simple survey form that uses the following HTML
controls:

� HtmlForm

� HtmlButton

� HtmlInputText

� HtmlSelect

Let’s begin by creating a new file within your favorite code editor. The following
code creates the visual interface for the survey:

File: SimpleForm.aspx (excerpt)

<html>
<head>
…
</head>

Order the print version of this book to get all 700+ pages!94

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

<body>
<form runat="server">
 <h2>Take the Survey!</h2>
 <p>Name:

 <input type="text" id="txtName" runat="server" /></p>
 <p>Email:

 <input type="text" id="txtEmail" runat="server" /></p>
 <p>Which server technologies do you use?

 <select id="servermodel" runat="server" multiple="true">
 <option>ASP.NET</option>
 <option>PHP</option>
 <option>JSP</option>
 <option>CGI</option>
 <option>Coldfusion</option>
 </select></p>
 <p>Do you like .NET so far?

 <select id="likedotnet" runat="server">
 <option selected>Yes</option>
 <option>No</option>
 </select></p>
 <p><button id="myButton" OnServerClick="Click" runat="server">
 Confirm</button></p>
</form>
</body>
</html>

From what we’ve already covered on HTML controls, you should have a good
idea of what this page will look like. All we’ve done is place some HtmlInputText
controls, an HtmlButton control, and an HtmlSelect control inside the obligatory
HtmlForm control. Remember, HTML controls are essentially just HTML tags
with the runat="server" attribute. When it’s complete, the interface will re-
semble Figure 4.1.

95Order the print version of this book to get all 700+ pages!

Processing a Simple Form

http://www.sitepoint.com/launch/eed6c1

Figure 4.1. Create the interface of the ASP.NET page using HTML
controls.

When users click the button, we’ll simply display their responses in their browsers.
In a real application, we’d probably be more likely to save this to a database and
perhaps show the results as a chart. Whatever the case, we’d access the properties
of the HTML controls as shown in the following code:

VB.NET File: SimpleForm.aspx (excerpt)

<script runat="server" language="VB">
Sub Click(s As Object, e As EventArgs)
 Response.Write("Your name is: " & txtName.value & "
")
 Response.Write("Your email is: " & txtEmail.value & "
")
 Response.Write("You like to work with: " & servermodel.value & _
 "
")
 Response.Write("You like .NET: " & likedotnet.value)
End Sub
</script>

Order the print version of this book to get all 700+ pages!96

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

C# File: SimpleForm.aspx (excerpt)

<script runat="server" language="C#">
void Click(Object s, EventArgs e) {
 Response.Write("Your name is: " + txtName.Value + "
");
 Response.Write("Your email is: " + txtEmail.Value + "
");
 Response.Write("You like to work with: " + servermodel.Value +
 "
");
 Response.Write("You like .NET: " + likedotnet.Value);
}
</script>

Just as you’ve seen with examples from previous chapters, we place our VB.NET
and C# code inside a server-side script block within the <head> part of the page.
Next, we create a new Click event handler which takes the two usual parameters.
Finally, we use the Response object’s Write() method to print out the user’s re-
sponses within the page.

Once you’ve written the code, you can save your work and test the results from
your browser. Enter some information and click the button. What you type in
should appear at the top of the page when the button is clicked.

Introduction to Web Forms
With the inception of new technologies, there’s always new terminology to
master. ASP.NET is no different. With ASP.NET, even the simplest terms that
were previously used to describe a Web page have changed to reflect the processes
that occur within them. Before we begin to describe the process followed by Web
Forms, let’s discuss the foundation concept of Web pages.

On the most basic level, a Web page is a text file that contains markup. Web
pages are meant to be viewed from a browser window, which parses the file con-
taining markup to present the information to the user in the layout envisaged
by the developer. Web pages can include text, video, sound, animations, graphics,
and even chunks of "code" from a variety of technologies.

An HTML form, as you learned in the previous sections, is a page that contains
one or more form elements grouped together within an HTML <form> tag. Users
interact with the various form elements to make certain choices, or provide certain
information; this information is then sent to the server for processing upon the
click of a submit button. This is useful to us as ASP.NET developers because
regular HTML forms have a built-in mechanism that allows forms to be submitted
to the server. Once the form has been submitted, some kind of extra techno-

97Order the print version of this book to get all 700+ pages!

Introduction to Web Forms

http://www.sitepoint.com/launch/eed6c1

logy—in this case, ASP.NET—needs to be present on the server to perform the
actual form processing.

In ASP.NET, we call Web pages Web Forms; they contain presentational ele-
ments (ASP.NET Web controls) in an HTML form, as well as any code (the
processing logic) we’ve added for the page’s dynamic features.

A typical Web Form is shown in Figure 4.2:

Figure 4.2. A Web Form contains code for processing logic and
Web controls for presentational purposes.

The next section looks at the various Web controls and how they may be used
within your Web Forms. They’re very similar in appearance to HTML, so you
shouldn’t have any trouble coming to grips with them.

Introduction to Web Controls
As we’ve just seen, Web Forms allow users to interact with our site using Web
controls. With Web controls, Microsoft basically reinvented HTML from scratch.
For example, it created two different Web controls that correspond to the two
different versions of the HTML <select> tag: a DropDownList control and a
ListBox control. This means there isn’t a direct one-to-one correspondence

Order the print version of this book to get all 700+ pages!98

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

between the Web controls and standard HTML tags, as there is with HTML
controls. Web controls follow the same basic pattern as HTML tags, but the tag
name is preceded by asp: and the name is capitalized using "CamelCasing."
Consider the HTML <input> tag, which creates an input text box on screen:

<input type="text" name="username" size="30" />

The equivalent Web control is the TextBox control, and it would look like this:

<asp:TextBox id="username" Columns="30" runat="server">
</asp:TextBox>

Note that, unlike many HTML tags, Web controls always require a closing tag
(the </asp:TextBox> part above). We can also use the shorthand /> syntax if
our Web control tag doesn’t contain anything between its opening and closing
tags. So, we could also write this TextBox like so:

<asp:TextBox id="username" Columns="30" runat="server" />

To sum up, the key points to remember when working with Web controls are:

� All Web controls must be placed within a <form runat="server"> tag to
function properly.

� All Web controls require id and runat="server" properties to function
properly.

� All Web controls follow the same pattern, but different properties (attributes)
are available to different controls.

� They all start with the asp prefix, followed by a colon.

There are more Web controls than HTML controls, and some offer advanced
features that simply aren’t available in HTML alone. Controls that we’ll discuss
in this and future chapters are as follows:

� basic Web controls (Chapter 4)

� validation Web controls (Chapter 5)

� data controls (Chapter 9)

� user controls (Chapter 16)

99Order the print version of this book to get all 700+ pages!

Introduction to Web Controls

http://www.sitepoint.com/launch/eed6c1

� rich controls (Chapter 16)

Basic Web Controls
The basic Web controls perform the on-screen layout of a Web page, and mirror
in many ways the HTML controls that are based on regular HTML. However,
they offer some new refinements and enhancements, and should be used in place
of HTML whenever possible. In this section, we’ll look at the controls in this
group, namely:

� Label

� TextBox

� Button

� Image

� ImageButton

� LinkButton

� HyperLink

� RadioButton

� RadioButtonList

� CheckBox

� CheckBoxList

� DropDownList

� ListBox

� Panel

� PlaceHolder

Order the print version of this book to get all 700+ pages!100

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Label

The easiest way to display static text on your page is simply to add the text to
the body of the page without enclosing it in any tag. However, if you want to
modify the text displayed on a page from ASP.NET code, you can display your
text within a Label control. Here’s a typical example:

<asp:Label id="lblMessage" Text="" runat="server" />

The following code sets the Text property of the Label control to display the
text “Hello World”:

VB.NET

Public Sub Page_Load()
 lblMessage.Text = "Hello World"
End Sub

C#

public void Page_Load() {
 lblMessage.Text = "Hello World";
}

Reading this Page_Load() handler code, we can see that when the page first
loads, the Text property of the Label control with the ID of lblMessage will be
set to “Hello World.”

TextBox

The TextBox control is used to create on screen a box in which the user can type
or read standard text. This Web control can be set to display a standard HTML
text input field, an HTML password field, or an HTML text area, using the
TextMode property. The following code shows how we might use it in a simple
login page:

<p>Username:
<asp:TextBox id="txtUser" TextMode="SingleLine" Columns="30"
 runat="server" /></p>

<p>Password:
<asp:TextBox id="txtPassword" TextMode="Password" Columns="30"
 runat="server" /></p>

<p>Comments:

101Order the print version of this book to get all 700+ pages!

Label

http://www.sitepoint.com/launch/eed6c1

<asp:TextBox id="txtComments" TextMode="MultiLine" Columns="30"
 Rows="10" runat="server" /></p>

In each of the three instances above, the attribute TextMode dictates the kind of
text box to render.

Button

By default, the Button control renders the same form submit button that’s
rendered by the HTML <input type="Submit"> tag. When a button is clicked,
the form containing the button is submitted to the server for processing, and
both click and command events are raised. The following code displays a Button
control and a Label:

<asp:Button id="btnSubmit" Text="Submit" runat="server"
 OnClick="WriteText" />
<asp:Label id="lblMessage" runat="server" />

Notice the OnClick attribute on the control. Unlike the HtmlButton HTML
control, OnClick assigns a server-side event handler—there is no need to remember
to use OnServerClick. When the button is clicked, the Click event is raised and
the WriteText() subroutine is called. The WriteText() subroutine will contain
the code that performs the intended function for this button, such as displaying
a message for the user:

VB.NET

Public Sub WriteText(s As Object, e As EventArgs)
 lblMessage.Text = "Hello World"
End Sub

C#

public void WriteText(Object s, EventArgs e) {
 lblMessage.Text = "Hello World";
}

It’s important to realize that most Web controls have events associated with
them, and the basic idea and techniques are the same as for the Click event of
the Button control.

Image

An Image control places on the page an image that can be accessed dynamically
from code; it equates to the tag in HTML. Here’s an example:

Order the print version of this book to get all 700+ pages!102

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

<asp:Image id="myImage" ImageUrl="mygif.gif" runat="server"
 AlternateText="description" />

ImageButton

An ImageButton control is similar to a Button control, but it uses an image you
supply in place of the typical gray Windows-style button. For example:

<asp:ImageButton id="myImgButton" ImageUrl="myButton.gif"
 runat="server" />

LinkButton

A LinkButton control renders a hyperlink on your page. From the point of view
of ASP.NET code, LinkButtons can be treated in much the same way as buttons,
hence the name.

<asp:LinkButton id="myLinkButon" Text="Click Here" runat="server"
 />

HyperLink

The HyperLink control, which is similar to the LinkButton control, creates a
hyperlink on your page. It’s simpler and faster to process than LinkButton, but,
unlike the LinkButton control, which offers features such as Click events and
validation, HyperLink can be used only to click and navigate from one page to
the next.

<asp:HyperLink id="myLink" NavigateUrl="http://www.example.com/"
 ImageUrl="myButton.gif" runat="server">My Link</asp:HyperLink>

The ImageUrl attribute, if specified, causes the control to display a linked image
instead of the text provided.

RadioButton

You can add individual radio buttons to your page one by one, using the
RadioButton control. Radio buttons are grouped together using the GroupName
property. Only one RadioButton control from each group can be selected at a
time.

<asp:RadioButton id="radSanDiego" GroupName="City"
 Text="San Diego" runat="server" />

103Order the print version of this book to get all 700+ pages!

ImageButton

http://www.sitepoint.com/launch/eed6c1

<asp:RadioButton id="radBoston" GroupName="City" Text="Boston"
 runat="server" />
<asp:RadioButton id="radPhoenix" GroupName="City" Text="Phoenix"
 runat="server" />
<asp:RadioButton id="radSeattle" GroupName="City" Text="Seattle"
 runat="Server" />

The main event associated with RadioButtons is the CheckChanged event; which
can be handled with the OnCheckChanged attribute.

RadioButtonList

Like the RadioButton control, the RadioButtonList control represents radio
buttons. However, the RadioButtonList control represents a list of radio buttons
and uses more compact syntax. Here’s an example:

<asp:RadioButtonList id="radlFavColor" runat="server">
 <asp:ListItem Text="Red" Value="red" />
 <asp:ListItem Text="Blue" Value="blue" />
 <asp:ListItem Text="Green" Value="green" />
</asp:RadioButtonList>

One of the great features of the RadioButtonList is its ability to bind to a data
source. For instance, imagine you have a list of employees in a database. You
could create a page that binds a selection from that database to the
RadioButtonList control, to list dynamically certain employees within the control.
The user would then be able to select one (and only one) employee from that
list, and our code could determine the choice.

The most useful event produced by RadioButtonList is the
SelectedIndexChanged event, to which you can assign a handler with the OnSe-
lectedIndexChanged attribute

CheckBox

You can use a CheckBox control to represent a choice that can be only a yes
(checked) or no (unchecked) value.

<asp:CheckBox id="chkQuestion" Text="I like .NET!" runat="server"
 />

As with the RadioButton control, he main event associated with a CheckBox is
the CheckChanged event; which can be handled with the OnCheckChanged attrib-
ute.

Order the print version of this book to get all 700+ pages!104

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

CheckBoxList

As you may have guessed, the CheckBoxList control represents a group of check
boxes; it’s equivalent to using several CheckBox controls in row:

<asp:CheckBoxList id="chklFavDrinks" runat="server">
 <asp:ListItem Text="Pizza" Value="pizza" />
 <asp:ListItem Text="Tacos" Value="tacos" />
 <asp:ListItem Text="Pasta" Value="pasta" />
</asp:CheckBoxList>

Like the RadioButtonList control, the CheckBoxList control has the capability
to bind to a data source, and produces a SelectedIndexChanged event that you
can handle with OnSelectedIndexChanged.

DropDownList

A DropDownList control is similar to the HTML <select> tag. The DropDownList
control allows you to select one item from a list using a drop-down menu.

<asp:DropDownList id="ddlFavColor" runat="server">
 <asp:ListItem Text="Red" value="red" />
 <asp:ListItem Text="Blue" value="blue" />
 <asp:ListItem Text="Green" value="green" />
</asp:DropDownList>

As is the case with other collection-based controls, such as the CheckBoxList
and RadioButtonList controls, the DropDownList control can be bound to a
database, thus allowing you to extract dynamic content into a drop-down menu.
The main event produced by this control, as you might expect, is
SelectedIndexChanged, handled with OnSelectedIndexChanged.

ListBox

A ListBox control equates to the HTML <select> tag with the size attribute
set to 2 or more. The ListBox control allows you to select items from a multiline
menu. If you set the SelectionMode attribute to Multiple, the user will be able
to select more than one item from the list, as in this example:

<asp:ListBox id="listTechnologies" runat="server"
 SelectionMode="Multiple">
 <asp:ListItem Text="ASP.NET" Value="aspnet" />
 <asp:ListItem Text="JSP" Value="jsp" />
 <asp:ListItem Text="PHP" Value="php" />

105Order the print version of this book to get all 700+ pages!

CheckBoxList

http://www.sitepoint.com/launch/eed6c1

 <asp:ListItem Text="CGI" Value="cgi" />
 <asp:ListItem Text="Coldfusion" Value="cf" />
</asp:ListBox>

Again, because the ListBox control is a collection-based control, it can be dynam-
ically bound to a data source. The most useful event that this control provides
is—you guessed it—SelectedIndexChanged, with the corresponding OnSelec-
tedIndexChanged attribute.

Panel

The Panel control functions similarly to the <div> tag in HTML, in that the set
of items that resides within the tag can be manipulated as a group. For instance,
the Panel could be made visible or hidden by a Button’s Click event:

<asp:Panel id="pnlMyPanel" runat="server">
 <p>Username:
 <asp:TextBox id="txtUsername" Columns="30" runat="server" />
 </p>
 <p>Password:
 <asp:TextBox id="txtPassword" TextMode="Password"
 Columns="30" runat="server" /></p>
</asp:Panel>

<asp:Button id="btnHide" Text="Hide Panel" OnClick="HidePanel"
 runat="server" />

The code above creates two TextBox controls within a Panel control. The Button
control is outside of the panel. The HidePanel() subroutine would then control
the Panel’s visibility by setting its Visible property to False:

VB.NET

Public Sub HidePanel(s As Object, e As EventArgs)
 pnlMyPanel.Visible = False
End Sub

C#

public void HidePanel(Object s, EventArgs e) {
 pnlMyPanel.Visible = false;
}

In this case, when the user clicks the button, the Click event is raised and the
HidePanel() subroutine is called, which sets the Visible property of the Panel
control to False.

Order the print version of this book to get all 700+ pages!106

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

PlaceHolder

The PlaceHolder control lets us add elements at a particular place on a page at
any time, dynamically, through code.

<asp:PlaceHolder id="phMyPlaceHolder" runat="server" />

The following code dynamically adds a new HtmlButton control within the place
holder.

VB.NET

Public Sub Page_Load()
 Dim btnButton As HtmlButton = New HtmlButton()
 btnButton.InnerText = "My New Button"
 phMyPlaceHolder.Controls.Add(btnButton)
End Sub

C#

public void Page_Load() {
 HtmlButton btnButton = new HtmlButton();
 btnButton.InnerText = "My New Button";
 phMyPlaceHolder.Controls.Add(btnButton);
}

That’s it for our quick tour of the basic Web controls. For more information on
Web controls, including the properties, methods, and events for each, have a
look at Appendix B.

Handling Page Navigation
Links from page to page are what drives the Web. Without linking, the Web
would be little more than a simple page-based information source. Links enable
us to move effortlessly from page to page with a single click; they bridge the gaps
between related ideas, regardless of the boundaries imposed by geography and
politics. This section focuses on page navigability using:

� the HyperLink control

� navigation objects and their methods

Suppose for a minute that you have created a Website that allows your users to
choose from a selection of items on one page. You could call this page viewcata-
log.aspx. Imagine that you have a second page, called viewcart.aspx. Once

107Order the print version of this book to get all 700+ pages!

PlaceHolder

http://www.sitepoint.com/launch/eed6c1

users select an item from viewcatalog.aspx, you’d probably want to link them
directly to viewcart.aspx so that they can keep track of their orders. To achieve
this, we clearly must pass the information from the viewcatalog.aspx page over
to the viewcart.aspx page.

Using The HyperLink Control
The HyperLink control creates a simple HTML hyperlink on a page. Once it’s
clicked, the user is redirected to the page specified by the NavigateUrl property.
For instance:

<asp:HyperLink id="hlAddToCart" NavigateUrl="viewcart.aspx"
 runat="server" Text="View Cart" />

Here, the NavigateUrl property specifies that this link leads to the page called
viewcart.aspx. Figure 4.3 shows how the HyperLink control is rendered in the
browser.

Figure 4.3. The HyperLink control renders similar to the anchor
tag in the browser.

However, once we’ve arrived at the new page, it has no way of accessing the in-
formation from the first page. If we need to provide the user some continuity of
information, we need something else.

Navigation Objects And Their Methods
The previous example rendered a simple control similar to the HTML anchor
tag. Once the link is followed, however, we have no record of the previous page
or any data it contained (the Web is a stateless technology).

Order the print version of this book to get all 700+ pages!108

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

If we wish to pass information from one page to the next, we can use one of the
three methods listed below to create the link between the pages:

Response.Redirect() Navigates to a second page from code. This is equival-
ent to using the HyperLink control, but allows us to
set parameters on the query string dynamically.

Server.Transfer() Ends the current Web Form and begins executing a
new Web Form. This method only works when the
user is navigating to a new Web Form page (.aspx).

Server.Execute() Begins executing a new Web Form while displaying
the current Web Form. The contents of both forms
are combined in the response sent to the browser.
Again, this method only works when the user is navig-
ating to a Web Forms page (.aspx).

The easiest and quickest way to redirect your users from the viewcatalog.aspx
page to the viewcart.aspx page would be using Reponse.Redirect():

VB.NET

Sub linkClk(s As Object, e As EventArgs)
 Response.Redirect("viewcart.aspx")
End Sub

C#

void linkClk(Object s, EventArgs e) {
 Response.Redirect("viewcart.aspx");
}

You could then use the LinkButton control to call this subroutine as follows:

<asp:LinkButton id="lbAddToCart" Text="Add To Cart"
 OnClick="linkClk" runat="server"/>

This time, when you click the LinkButton control, the Click event is raised, the
subroutine is called, and Response.Redirect() is called with the name of the
page we want to link to as a parameter. In this way, we’re redirecting to the new
page directly from the code, rather than by using a particular tag. This enables
us to pass information to the new page in the query string.

The query string is a list of variables and their respective values that we can ap-
pend to a page’s URL, allowing us to retrieve those variables and values from
that page’s code.

109Order the print version of this book to get all 700+ pages!

Navigation Objects And Their Methods

http://www.sitepoint.com/launch/eed6c1

As an illustration, imagine you have a drop-down list that contains the following
product information:

<p><asp:DropDownList id="ddlProducts" runat="server">
 <asp:ListItem Text="Pants" />
 <asp:ListItem Text="Shirt" />
 <asp:ListItem Text="Hat" />
 <asp:ListItem Text="Socks" />
</asp:DropDownList></p>

<p><asp:LinkButton id="lbAddToCart" Text="Add To Cart"
 OnClick="linkClk" runat="server" /></p>

The code you use to handle link clicks will need to find the item selected in the
drop-down list and append it to the query string of the URL to which the user
is to be redirected, as follows:

VB.NET

Sub linkClk(s As Object, e As EventArgs)
 Dim strQueryStr As String = "?Product=" & _
 Server.UrlEncode(ddlProducts.SelectedItem.Text)
 Response.Redirect("viewcart.aspx" & strQueryStr)
End Sub

C#

void linkClk(Object s, EventArgs e) {
 string strQueryStr = "?Product=" +
 Server.UrlEncode(ddlProducts.SelectedItem.Text);
 Response.Redirect("viewcart.aspx" + strQueryStr);
}

Note the use of the Server.UrlEncode() method, which converts characters not
allowed in query string values (e.g. &) to URL-safe character codes (e.g. %26) that
the browser will understand. You should always use this method when adding
arbitrary values to query strings.

When a user selects an item from the drop-down list and clicks the LinkButton
control, the viewcart.aspx page is opened with the selected product appended
as a parameter of the query string. This is illustrated in Figure 4.4.

Figure 4.4. Append the selected item to the query string.

Order the print version of this book to get all 700+ pages!110

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Now that you’ve passed the product to the viewcart.aspx page, you have to
grab it from the query string in the new page. We get hold of variables from the
query string by accessing the Request.QueryString collection, like so:

VB.NET

Sub Page_Load()
 lblResult.Text = Request.QueryString("Product")
End Sub

C#

void Page_Load() {
 lblResult.Text = Request.QueryString["Product"];
}

Here, we simply display the value of the Product query string parameter, as we
see in Figure 4.5.

Figure 4.5. Set the text property of the label control within a
Page_Load event handler to accept the new parameter value.

Now, when you select a product and add it to the cart, the result is displayed in
the redirected page on a label with an id of lblResult. Now sure, a real product

111Order the print version of this book to get all 700+ pages!

Navigation Objects And Their Methods

http://www.sitepoint.com/launch/eed6c1

catalog and shopping cart has a lot more to it, but in this section we’ve uncovered
an important building block.

Postback
Postback can be confusing to newcomers because, while most ASP.NET developers
know what it is, they can’t seem to explain it clearly. The topics we’ve covered
so far, like subroutines, functions, and events, are not new to most Web de-
velopers. HTML, in combination with client-side JavaScript, has been doing all
that for years. ASP.NET is different to this model, though, because it is a server-
side, not client-side, technology—events that occur on a page are handled by
code running on the server. For this to work, ASP.NET uses the mechanism of
postback.

When an event is triggered, for instance, a button is clicked, or an item in a grid
is selected, the page is submitted back to the server for processing, along with
information about the event and any preexisting data on the page (via view state).
We say the page “posts back” to the server. This is a powerful concept to grasp
because it is postback that lets us run code on the server rather than on the client’s
browser, and it is postback that lets our server code know which items within a
drop-down list were selected, or what information a user typed into a text box.

But what would happen if you had multiple DropDownList controls that were
populated with database data? Users could interact with those DropDownList
controls and, in turn, we could set certain options within the page based on what
they selected from the drop-down menus. Although this seems like a common
task, with traditional ASP it incurred considerable overhead. The problem is that
while the data that’s bound to the drop-down menu from the database never
changes, every time the user selects an item from the drop-down menu and a
postback has to be done, the database must be accessed again to rebuild the
contents of each drop-down list on the page. However, this is not a problem in
ASP.NET.

In ASP.NET we can check for postback with the IsPostBack property, and thus
avoid performing any time consuming tasks unnecessarily. IsPostBack is a page-
level property—meaning that it’s a property of the page itself—and we’d most
commonly use it in the Page_Load() event handler to execute code only when
the page is first loaded. Consider the following example:

VB.NET File: PostBack.aspx

<html>
<head>

Order the print version of this book to get all 700+ pages!112

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

<script runat="server" language="VB">
Sub Page_Load(s As Object, e As EventArgs)
 lblMessage1.Text = Now()
If Not IsPostBack Then

 lblMessage2.Text = Now()
End If

End Sub
</script>
</head>

<body>
<form runat="server">
 <p>Not Checking for postback:

 <asp:Label id="lblMessage1" runat="server" /></p>
 <p>Checking for postback:

 <asp:Label id="lblMessage2" runat="server" /></p>
 <p><asp:Button id="btnClick" Text="Click Me" runat="server" />
 </p>
</form>
</body>
</html>

C# File: PostBack.aspx

<html>
<head>
<script runat="server" language="C#">
void Page_Load(Object s, EventArgs e) {
 lblMessage1.Text = Convert.ToString(DateTime.Now);
if (!IsPostBack) {

 lblMessage2.Text = Convert.ToString(DateTime.Now);
}

}
</script>
</head>

<body>
<form runat="server">
 <p>Not Checking for postback:

 <asp:Label id="lblMessage1" runat="server" /></p>
 <p>Checking for postback:

 <asp:Label id="lblMessage2" runat="server" /></p>
 <p><asp:Button id="btnClick" Text="Click Me" runat="server" />
 </p>
</form>
</body>
</html>

113Order the print version of this book to get all 700+ pages!

Postback

http://www.sitepoint.com/launch/eed6c1

The result will look similar to Figure 4.6.

Figure 4.6. The IsPostBack property checks to make sure the user
isn’t resubmitting the page.

In this example, the IsPostBack check means that the second label doesn’t refresh
when the Button control is clicked. Similarly, we could use IsPostBack within
the Page_Load() subroutine to set up database-driven drop-down menus just
once within each user’s session, making the online experience smoother, and
making our application more scalable. Don’t worry if postback seems a bit con-
fusing now—we’ll use it more in upcoming chapters, so if it doesn’t yet, it should
make sense after a few more practical examples.

Formatting Controls with CSS
HTML was deliberately designed to pay little attention to the specifics of how
particular items on a page were rendered. It is left up to the individual browser
to work out these intricacies, and tailor the output to the limitations and strengths
of the user’s machine. While we can change font styles, sizes, colors, and so on
using HTML tags, this is a practice that can lead to verbose code and pages that
are very hard to restyle at a later date.

The Cascading Style Sheets (CSS) language aims to provide the degree of
control, flexibility, and pizzazz that modern Web designers seek. It’s a standard
that’s widely supported by all the popular browsers, in its oldest version (CSS1)
at the very least.

CSS is a powerful tool for Web developers because it gives us the power to create
one set of styles in a single sheet, and apply those styles to all the pages in our

Order the print version of this book to get all 700+ pages!114

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Website. All the pages then use the same fonts, colors, and sizes for the same
sections, giving the site a consistent feel throughout. Regardless of whether our
site contains three pages or three hundred, when we alter the styles in the style
sheet, those changes are immediately applied to all pages based on that style
sheet.

Types of Styles and Style Sheets
There are three different ways of associating styles to elements of a particular
Web page. I’ve already mentioned the first, and usually the best, which is an ex-
ternal file:

External File By placing your style rules in an external style sheet,
you can link this one file to any Web pages where you
want those styles to be used. This makes updating a
Website’s overall look a cakewalk.

Document Wide Rather than having an external sheet, you can place
style rules for a page within a <style> tag inside that
page’s head element. The problem is that we can’t
then use those styles in another page without typing
them in again, which makes global changes to the en-
tire site difficult to manage.

Inline Inline styles allow us to set styles for a single tag using
the style attribute. For instance, we might create a
text box in regular HTML with a style attribute that
draws a border around the text box like so:

<input type="text"
 style="border-style:groove" />

CSS style rules create styles that are applied to elements of a page in one of two
ways1:

Classes Arguably the most popular way to use styles within
your pages, classes allow you to set up a custom style
that will be applied to any tag or control that has a

1This is, to some extent, a simplified view of how CSS works. For the complete story, refer to HTML
Utopia: Designing Without Tables Using CSS (SitePoint, ISBN 0-9579218-2-9).

115Order the print version of this book to get all 700+ pages!

Types of Styles and Style Sheets

http://www.sitepoint.com/launch/eed6c1

class attribute that matches the name of your custom
style.

Tag Redefinition Redefining a tag affects the appearance of certain
standard HTML tags. For instance, the <hr> tag is
generally given a width of 100% by default, but you
could redefine the tag in CSS to have a width of 50%.

Whether you’re building external, document-wide, or inline style sheets, properties
for classes and tag redefinitions use the same syntax. To create a class within an
external style sheet file, you’d use the following syntax:

.myClass {
 font-family: arial;
 font-size: 10pt;
 color: red;
}

This would then be saved in a file with a .css extension, such as styles.css,
and linked into the Web Form with the following line in the <head> tag of your
document:

<link href="styles.css" rel="stylesheet" />

Similarly, to define a class within a document-wide style sheet, you would use
the following syntax:

<head>
<style type="text/css">
 .myClass {
 font-family: arial;
 font-size: 10pt;
 color: red;
 }
</style>
</head>

When you’re using inline styles, use the following syntax:

My
Stylized Text

For inline styles, simply add all properties to the tag in question with the style
attribute. Above, we’ve used the tag, but the principle remains the same
for the other tags.

Order the print version of this book to get all 700+ pages!116

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Now that you have a basic understanding of some of the fundamental concepts
behind CSS, let’s look at the different types of styles that can be used within our
ASP.NET applications.

Style Properties
There are many different types of properties that you can modify using style
sheets. Below is a list of the common types:

Font This category provides you with the ability to format
text level elements, including their font face, size, decor-
ation, weight, color, etc.

Background This category allows you to customize backgrounds for
objects and text. Modifying these values gives you control
over the color, image, and whether or not you want to
repeat an image.

Block This category allows you to modify the spacing between
paragraphs, lines of text, and spaces between text and
words.

Box The box category provides changes and customizations
for tables. If you need to modify borders, padding, spa-
cing, and colors on a table, row, or cell, you can modify
elements within this category.

Border This category lets you draw boxes of different colors,
styles and thicknesses around page elements.

List This category allows you to customize the way ordered
and unordered lists are created.

Positioning Modifying positioning allows you to move and position
tags and controls freely.

These categories provide a list of what can generally be modified using CSS. As
we progress through the book, the many types of properties will become evident.

117Order the print version of this book to get all 700+ pages!

Style Properties

http://www.sitepoint.com/launch/eed6c1

The CssClass Property
Once you have defined a class in a style sheet (be it external or internal), you’ll
want to begin associating that class with elements in your Web Forms. You can
associate classes with ASP.NET Web controls using the CssClass property. The
following example uses classes defined within a document-wide style sheet:

<html>
<head>
<style type="text/css">
 .dropdownmenu {
 font-family: Arial;
 background-color: #0099FF;
 }
 .textbox {
 font-family: Arial;
 background-color: #0099FF;
 border: 1px solid;
 }
 .button {
 font-family: Arial;
 background-color: #0099FF;
 border: 1px solid;
 }
 .text {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 10px;
 }
</style>
</head>

<body>
<form runat="server">
<p class="text">Please select a product:</p>
<p><asp:DropDownList id="ddlProducts" CssClass="dropdownmenu"
 runat="server">
 <asp:ListItem Text="Shirt" selected="true" />
 <asp:ListItem Text="Hat" />
 <asp:Listitem Text="Pants" />
 <asp:ListItem Text="Socks" />
</asp:DropDownList></p>
<p><asp:TextBox id="txtQuantity" CssClass="textbox" runat="server"
 /></p>
<p><asp:Button id="btnAddToCart" CssClass="button" runat="server"
 Text="Add To Cart" /></p>

Order the print version of this book to get all 700+ pages!118

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

</form>
</body>
</html>

A Navigation Menu and Web Form for
the Intranet Application

Now that you have a solid foundation in HTML controls, Web Forms, Web
controls, Page Interaction, Navigation, and Style Sheets, you’re ready to begin
working on the project that we’ll build on throughout the remainder of this book.
With the Dorknozzle Intranet Application, I hope to introduce you to real
world development in simple stages, as we work through the following chapters
together.

Introducing the Dorknozzle Intranet Application
While most books give you a series of simple, isolated examples to illustrate
particular techniques, this book is a little different. Many of the examples provided
in these pages will involve work on a single project—an intranet application for
the fictional Dorknozzle company. We’ll build on this application as we go along,
illustrating the many different concepts that are important to developers of any
type of Web application. The intranet application we’ll develop will offer the
following functionality:

Welcome Displays company event information to the user of
the Web application.

Helpdesk Allows any Dorknozzle employees to submit a problem
as a helpdesk ticket to an IT administrator regarding
issues they experience with software, hardware, or their
computer.

Employee Store Employee stores boost company morale. By building
an online store, we’ll allow Dorknozzle employees to
buy life-enriching items such as mugs, shirts, and
mouse pads. All will proudly bear the Dorknozzle logo,
of course!

Newsletter Archive Another way to improve morale is to keep employees
informed of company events and news. Each month,

119Order the print version of this book to get all 700+ pages!

A Navigation Menu and Web Form for the Intranet Application

http://www.sitepoint.com/launch/eed6c1

the Dorknozzle HR Manager will send out a company
newsletter to all employees.

Employee Directory Employees will likely want to call each other to discuss
important, company-related affairs… such as last
night’s television viewing! The employee directory
should let employees find other staff members’ details.

Address Book While the employee directory houses handy informa-
tion for use by staff, the purpose of the address book
is to provide more detailed information about all of
the employees within the company

Admin Tools Administrators will need a way to modify closed
helpdesk tickets, delete the records of fired employees,
create newly hired employees’ profiles, modify inform-
ation on current employees, and more. The admin
tools section will provide the interface for this.

Before we can begin creating all these smaller applications, we must build the
framework that will act as a template across the site. In this section, we’ll accom-
plish the following introductory tasks for the development of our intranet applic-
ation:

� Build the navigation menu.

� Create the style sheet.

� Design the template and Web Form for the helpdesk application.

Building the Navigation Menu
Once it’s complete, our fictitious intranet application will have modules for an
IT helpdesk, employee store, newsletter archive, employee directory, address
book, and admin console. Obviously, we’re going to need some kind of navigation
menu to make those sub-applications simple to find. Throughout this chapter,
we’ve studied numerous ways of navigating from page to page, and we could use
any of these methods here. We’ve discussed controls such as the Button control,
HyperLink control, and LinkButton control, and we’ve explored various objects
and methods for navigating from code. Although all these would work to a certain
degree, in this case, only one makes the most sense in terms of performance and
practicality.

Order the print version of this book to get all 700+ pages!120

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Before we begin, you’ll want to obtain the necessary files from the code archive
for this book. The files for this chapter include a starting template that you can
use for this project, as well as the complete version in case you run into problems.

Because we’re not submitting any data for processing, we can eliminate the Button
and LinkButton controls; each involves extra work from the server in order to
process the Click event it raises. As we only want to link from one page to the
next, and don’t care about performing any tasks programmatically, we can use
the simpler HyperLink control instead. Remember, we add a HyperLink control
to the page by inserting the following code inside the form:

<asp:HyperLink NavigateUrl="index.aspx" runat="server"
 Text="Home" />

This would add a link that showed the text “Home.”

Open up your text editor and create a new file with the standard HTML tags
required by ASP.NET pages, including an empty form with a runat="server"
attribute. Inside this form, add the HyperLink controls for helpdesk, employee
store, newsletter archive, employee directory, address book, and admin tools, like
so:

File: index.aspx (excerpt)

<!-- HyperLink controls for navigation -->
<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="index.aspx" runat="server" Text="Home"
 />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="helpdesk.aspx" runat="server"
 Text="HelpDesk" />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="employeestore.aspx" runat="server"
 Text="Employee Store" />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="newsletterarchive.aspx" runat="server"
 Text="Newsletter Archive" />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"

121Order the print version of this book to get all 700+ pages!

Building the Navigation Menu

http://www.sitepoint.com/launch/eed6c1

 />
<asp:HyperLink NavigateUrl="employeedirectory.aspx" runat="server"
 Text="Employee Directory" />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="addressbook.aspx" runat="server"
 Text="Address Book" />

<img src="Images/book_closed.gif" width="16" height="16" alt="+"
 />
<asp:HyperLink NavigateUrl="admintools.aspx" runat="server"
 Text="Admin Tools" />
<!-- End HyperLink controls -->

Once the links have been added to the page and you’ve placed the
book_closed.gif file in a subdirectory called Images, you could save your work
(as index.aspx) and view the results in your browser. At this stage, however, it
would look fairly bland. What we need is a few pretty graphics to provide visual
appeal! Although modern Web design practices would have us use CSS for our
page layout and visual design, we’ll resort to HTML tables here in order to stay
focused on the server-side aspects of our application.

Open index.aspx and create the following two regular (i.e. not server-side)
HTML tables at the very start of the page body:

File: index.aspx (excerpt)

<body>
<form runat="server">

<table width="100%" border="0" cellspacing="0" cellpadding="0"
 background="Images/header_bg.gif">
 <tr>
 <td><img src="Images/header_top.gif" width="450" height="142"
 alt="the official dorknozzle company intranet"
 /></td>
 </tr>
</table>

<table width="100%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td width="157"><img src="Images/header_bottom.gif"
 width="157" height="37" alt="" /></td>
 <td></td>

Order the print version of this book to get all 700+ pages!122

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

 </tr>
</table>

We’ll want to place our links in a table too. While we’re there, we’ll add some
news items to the main index page. Open up index.aspx once more, and place
the following HTML table around the links we’ve already added:

File: index.aspx (excerpt)

<table width="100%" border="0" cellspacing="0" cellpadding="10">
 <tr>
 <td valign="top" width="160">
 <!-- HyperLink controls for navigation -->
 …
 <!-- End HyperLink controls -->
 </td>
 <td valign="top">
 <h1>Company News:</h1>
 <p>We'll add some news later.</p>
 <h1>Company Events:</h1>
 <p>We'll add company events later.</p>
 </td>
 </tr>
</table>

</form>
</body>
</html>

The result will look similar to Figure 4.7.

123Order the print version of this book to get all 700+ pages!

Building the Navigation Menu

http://www.sitepoint.com/launch/eed6c1

Figure 4.7. Add HyperLink controls for the Intranet navigation
menu.

Isn’t it amazing the difference some well-chosen graphics can make? Don’t forget
to place the pictures from the download in the Images subdirectory. You can, of
course, find the completed source in the code archive, although I do recommend
you type the code in yourself as we progress, for practice value.

Create the Corporate Style Sheet
If you don’t mind the ordinary look of standard Web pages, then you can skip
this section. If, however, you don’t like standard blue hyperlinks, black, Times
New Roman text, and beveled form controls, this section is for you.

As you’ve already read, style sheets provide developers with flexibility and control
over the "look" of Web applications. In this section, we’ll explore the addition of
a customizable style sheet to our fictitious intranet application. We will define
styles for the following elements within our application:

� Hyperlinks

� Text (including body text and headings)

� Boxed controls (including text boxes and drop-down menus)

Order the print version of this book to get all 700+ pages!124

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

You can start by creating the CSS file that the styles will reside in. I’ve opened
Notepad and immediately saved the file as styles.css within the root directory
of the application, as shown in Figure 4.8.

Figure 4.8. Open Notepad and save the file as styles.css within
the root directory of the application folder.

Now, let’s apply some style properties to the following tags:

� body

� p

� h1

� a:link

� a:hover

125Order the print version of this book to get all 700+ pages!

Create the Corporate Style Sheet

http://www.sitepoint.com/launch/eed6c1

You’ll notice the a:link and a:hover items in this list, which are not strictly-
speaking tags. In the world of CSS, these are known as a pseudo-elements.
a:link narrows the selection to <a> tags that are links (as opposed to tags, which are targets). Assigning properties to a:hover will apply
those properties only to links over which the user is hovering the mouse.

We’ll also define a few classes for certain Web controls that don’t map directly
to a particular HTML tag:

.textbox For <asp:TextBox> controls, which become <input
type="text"> and <textarea> tags when sent to the
browser.

.button For <asp:Button> controls, which become <input
type="button">, <input type="submit">, and
<input type="reset"> tags.

.dropdownmenu For <asp:DropDownList> controls, which become
<select> tags.

Below is the code for the CSS rules that will apply the desired basic formatting
to our site. Type the following just as it appears into your styles.css file:

body {
 background: #FFFFFF;
 color: #000000;
 margin: 0;
 padding: 0;
}
p {
 font-family: Arial;
 font-size: 12px;
}
h1 {
 font-family: Arial;
 font-size: 14px;
 color: #000000;
}
a:link {
 font-family: Arial;
 font-size: 12px;
 color: #000000;
}
a:hover {
 font-family: Arial;

Order the print version of this book to get all 700+ pages!126

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

 font-size: 12px;
 color: #FF0000;
}
.textbox {
 font-family: Arial;
 font-size: 12px;
 border: 1px solid black;
}
.button {
 font-family: Arial;
 border: 1px solid black;
 background-color: #CCCCCC;
}
.dropdownmenu {
 font-family: Arial;
 font-size: 12px;
 background-color: #CCCCCC;
}

Now that the style sheet file has been created, we can link the style sheet file to
index.aspx by inserting the following line into the <head> tag of the document:

<link href="styles.css" rel="stylesheet" />

We’ll need to assign the CSS classes we have defined (textbox, button, and
dropdownmenu) to relevant controls as we create them, but for now our simple
HTML template will automatically benefit from the tags we have redefined.

Remember, we’re not limited to these styles. If, throughout the development of
our application, we decide to add more styles, we’ll simply need to open the
styles.css file and add them as necessary.

You can save your work at this point, and view it in the browser.

Design the Web Form for the Helpdesk
Application

The last part of the project is to add the employee Helpdesk request Web Form.
This will be a Web page that allows our fictitious employees to report hardware,
software, and workstation problems. The Web Form will be arranged as a series
of simple steps that users can follow to report their problems:

127Order the print version of this book to get all 700+ pages!

Design the Web Form for the Helpdesk Application

http://www.sitepoint.com/launch/eed6c1

� Pick from a predefined category of potential problem areas. (DropDownList
control)

� Pick from predefined subjects within the categories. (DropDownList control)

� Type a description of the problem. (Multiline TextBox control)

� Submit the request. (Button control)

Rather than creating a new, blank page and retyping all the code, you can simply
copy index.aspx and rename it helpdesk.aspx (or save a copy with the new
name if it’s already open in your editor). The only portion of the code that will
change to accommodate the HelpDesk interface is the last table in the body—the
one that contains the news items on index.aspx. Everything else stays the same,
because we want to have a single look for all our pages2. Change the final column
in the table to create two drop-down lists, a multiline text box, and a button, as
shown:

 <!-- End HyperLink controls -->
 </td>
 <td valign="top">
 <h1>Employee HelpDesk Request</h1>
 <p>Problem Category:

 <asp:DropDownList id="ddlCategory" CssClass="dropdownmenu"
 runat="server" /></p>
 <p>Problem Subject:

 <asp:DropDownList id="ddlSubject" CssClass="dropdownmenu"
 runat="server" /></p>
 <p>Problem Description:

 <asp:TextBox id="txtDescription" CssClass="textbox"
 Columns="40" Rows="4" TextMode="MultiLine"
 runat="server" /></p>
 <p><asp:Button id="btnSubmit" CssClass="button"
 Text="Submit Request" runat="server" /></p>
 </td>

Notice how we’ve applied our CSS classes to the appropriate controls here.

Don’t worry that the DropDownList controls don’t have items associated with
them—the categories and subjects will be predefined within database tables.
Later, we’ll bind these database tables to their respective controls.

When you’re finished, save your work and view it in a browser.

2We’ll see better ways to do this in later chapters…

Order the print version of this book to get all 700+ pages!128

Chapter 4: Web Forms and Web Controls

http://www.sitepoint.com/launch/eed6c1

Summary
In this chapter, we discussed HTML controls, Web Forms, and Web controls.
We also explored how to link between pages, and how to add style to controls.
You even built your first project, putting together the information you’ve learned
in this and previous chapters.

Your Web application efforts will focus predominantly on Web controls. In the
next chapter, we’ll learn how to check user input on those Web controls through
the use of the ASP.NET validation controls.

129Order the print version of this book to get all 700+ pages!

Summary

http://www.sitepoint.com/launch/eed6c1

130

Index
Symbols
&= operator, 567
', comments in VB.NET, 35
+= operator, 567
//, comments in C#, 35
== operator, 64
@ symbol, denoting parameters, 257

A
<a> tag and the HtmlAnchor control,

87
a:hover and a:link pseudo-elements,

126
ABS function, SQL, 235
Access databases

character matching, 226
creating relationships, 189
creating tables, 170
creating the Dorknozzle database,

165
data modelling, MSDE and, 18
data types, 170
database diagrams, 186, 191
Datasheet View, 178, 207
defining primary keys, 184
Design View, 170, 178, 199
Expression Builder, 229
INSERT statements, 215
installing Access, 18
listing supported functions, 229
namespaces for ADO.NET use, 244
Query Editor, 199
security, 195
SQL View feature, 202
suitability for ASP.NET, 6
UPDATE statements, 218
views for editing tables, 178

account profile page, PayPal, 496
<Ad> tag, AdRotator control, 610
add to cart functionality, 470
Add Watch option, 530
Add() method

Command object, 257
DataSet Tables collection, 382
DataTable Column collection, 386
DataTable Rows collection, 390

address book page, Dorknozzle data-
base, 368

ADO.NET, 243–304
common database queries, 253
main classes introduced, 244
new classes, 364
transactions, 295

AdRotator control, 609, 701
<Advertisement> tag, AdRotator con-

trol, 610
aggregate functions, SQL, 229

DataTable.Compute() and, 399
aliases as virtual directories, 14
<allow> element, Web.config file, 539
AllowPaging property, DataGrid con-

trol, 377–378
AllowSorting property, DataGrid con-

trol, 412
<AlternatingItemStyle> tag

DataGrid control, 314
DataList control, 345

<AlternatingItemTemplate> tag, 262
anonymous users, 534, 539
Append() method, StringBuilder class,

673
AppendText() method, File class, 564
application domains, advantages, 422
Application logs and error handling,

516
application state, 423

application variables, 424–425
Application_Start() method, 428, 430
applications (see Web applications)
<apply-templates> tag, XSLT, 602
appointment scheduler, 616–625

delete functionality, 623
methods, 617

<appSettings> tag, 434
arithmetic functions, SQL, 233
ArrayList class

deserialization example, 594
serialization example, 590, 593

arrays, 57
declaring, 58
multidimensional, 618
PrimaryKey property, DataTable,

391
ASP (Active Server Pages), 2, 4, 40
ASP.NET

(see also example ASP.NET pages)
advantages for building Web applic-

ations, 4
checking for correct installation, 10
manual installation, 12
page mechanisms, 31
page structure, 32
software requirements, 5
support sites, 29

<asp: (see following term)
asp: prefix

validation controls, 135
Web controls, 99

aspnet_wp.exe file, 523
.aspx ISAPI DLL, 10
assemblies, 658–660

compiled proxy classes as, 679
compiling proxy classes into, 660,

665
introduced, 423

attributes, XML tags, 599

Authenticate() method, FormsAu-
thentication class, 541, 546

authentication
methods, 532
MSDE security, 196
using localhost, 13
Web Data Administrator and, 22

authentication tickets (see cookies)
authorization, forms authorization, 538
auto incrementing columns, 183

Access, 170
DataColumn element, 397
DataTable object, 470
MSDE, 173

AutoGenerateColumns property
DataGrid control, 311

AVG function, SQL, 232

B
Background property category, 117
backslash character in C#, 248, 563
banner advertisements, 609
base classes, 79
BETWEEN keyword, 214
bin directories, 423
BinaryFormatter class, 589

Deserialize() method, 594
serialization example, 593
Serialize() method, 591, 621

BindData() method, 293, 341
checking query strings using, 320

Block property category, 117
<body> tags and presentational ele-

ments, 32
BodyFormat property, MailMessage

class, 586
Boolean variables, 475
Border property category, 117
BoundColumn control

DataGrid control, 312, 317
Box property category, 117

Order the print version of this book to get all 700+ pages!722

Index

http://www.sitepoint.com/launch/eed6c1

breakpoints, 525
bridge analogy, ADO.NET, 243, 364
browsers

ASP.NET display in, 28
detecting validation support, 133–

134
display of Web Services, 655
view of pages being debugged, 526
view of WSDL, 663
views of XML documents, 600

built-in classes, .NET, 27
built-in tags, 25
Button control, 102, 701

admintools.aspx page, 281, 286, 290
attributes listed, 49
class for, Dorknozzle project, 126
setting user control properties dynam-

ically, 633
shopping cart application, 457, 461–

462
<button> tags and the HtmlButton

control, 88
ButtonColumn control

DataGrid control, 317, 336, 484
ButtonColumn control, DataGrid con-

trol, 317, 336, 484
buttons

custom images as, 91
DataGrid columns acting as, 317

C
C# language

data types, 56
FirstPage.aspx example in, 25
operators, 64

Cache collection, 444
caching

arrays, appointment scheduler, 617
Web applications, 437

calculations
DataColumn values, 398

shopping cart quantity recalcula-
tions, 474

Calculator example Web Service, 653
Calendar control, 611, 702

interactive appointment scheduler,
616

Calendar_RenderDay() method
appointment scheduler, 622

Camel casing, Web controls, 99
cancel functionality, DataGrid edits,

328, 480
Cascading Style Sheets (see CSS)
cascading updates and deletes, 189, 193
case sensitivity, XML, 498
CaseSensitive property, DataTable ob-

ject, 391
casting, 56

generic controls to TextBoxes, 331
catching errors (see Try...Catch blocks)
CellPadding attribute, DataGrid con-

trol, 315
cells, as basis of DataLists, 339
character encoding, Server.UrlEncode()

method, 110
character matching, 226
CheckBox control, 104, 704

selecting alternative style sheets,
606–607

checkboxes, HtmlInputCheckbox con-
trol, 90

CheckBoxList control, 105, 704
checkout operations, shopping cart ap-

plication, 486
CheckOut() method, 489
classes

creating a Web Service, 654
definitions in code-behind files, 81
OO programming concept, 76

classes, .NET
built-in classes, 27
organization into namespaces, 70

723Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

classes, ADO.NET, 244
DataSet elements, 367

classes, CSS
applying style rules using, 115
applying to Web forms , 128

client-side validation, 133
ClientTarget attribute, Page directive,

134
ClientValidationFunction property,

CustomValidator, 159
Close() method

Connection object, 250
FileStream object, 592
StreamReader class, 567

code
breaking lines of, 65
compilation errors and, 500
isolation, in application domains,

422
runtime errors and, 501
stepping through when debugging,

525, 527
code declaration blocks, 34

connection strings, 247
example, 26

code render blocks, 36
binding tables to DataLists, 461
code-behind alternative, 79
contructing URLs dynamically, 457
templates and, for DataLists, 339

code reuse with stored procedures, 194
code-behind files, 34, 79–84
collections, 257
CollectName() method, user controls,

635
Color class, FromName() method, 623
columns

adding to database tables, 171
DataGrid, sorting data, 410
selective presentation with DataG-

rids, 311
Command objects, ADO.NET, 248

CommandName property, Button con-
trol, 462

CommandType class, 302
comments

in VB.NET and C# code, 35
server-side, 38

committing transactions, 297
Company Events Web Service

consuming the service, 679
CompanyEvents table, Dorknozzle

database, 179, 678
creating, 176
Web Service access, 676

CompareValidator control, 139, 716
compilation errors, 500
compiled technologies, 4, 658
Compute() method

DataTable class, 399
conditional logic, 65
configuration errors, 498
configuration sections, 435
configuration settings (see Web.config

file)
<configuration> tag, 434
connection strings, 247

storing in Web.config, 434
ContinueShopping() method, 484
controls

(see alsodata controls; HTML con-
trols; rich controls; validation
controls; Web controls; user
controls)

binding DataSets to, 368
declaring, code-behind files, 83
parser errors and, 499
selective loading, 636

controls collection
data controls, 329–330

controls collection, data controls, 329–
330

Order the print version of this book to get all 700+ pages!724

Index

http://www.sitepoint.com/launch/eed6c1

ControlToCompare property, Compar-
eValidator control, 141

ControlToValidate property
RequiredFieldValidator control, 135–

137
ControlToValidate property, Required-

FieldValidator control, 135–137
ControlValidate property, RangeValid-

ator control, 147
cookies

basis of forms authentication, 532
custom authentication tickets, 551

Cookies collection, 554
CORBA (Common Object Request

Broker Architecture), 649
Count property, DataSet Tables collec-

tion, 383
COUNT() function, SQL, 229
CREATE PROCEDURE command, 300
CreateText() method, File class, 562
<credentials> tag, Web.config file, 540
CSS (Cascading Style Sheets)

a:hover and a:link pseudo-elements,
126

Dorknozzle project styling, 124
formatting Web controls, 114

CssClass property, 118
currency data

display format, 477
validation, 143

CurrentPageIndex property, DataGrid
control, 379

custom authentication tickets, 551
custom error messages, 548
<customErrors> tag, Web.config file,

503
CustomValidator control, 157, 719

D
data access

ADO.NET, 243

data binding, 272
ListBox controls, 289
Page_Load() method, 293
queries to controls, 261

data controls, ASP.NET
(see alsoDataGrid control; DataList

control; Repeater control)
controls collection, 329
shopping cart interface, 457

data loss
modifying Global.asax, 430

data source binding
CheckBoxList control, 105
ListBox control, 106
RadioButtonList control, 104–105

data sources
text files as, 567

data types
Access, 170
C# and VB.NET, tabulated, 56
SQL Server, 173
validation, 141
variable declarations and, 54

DataAdapter class
properties, 414

databases
(see alsoAccess databases; MSDE;

SQL Server databases;
Dorknozzle database)

connections and the DataReader
classes, 245

DataSets as virtual databases, 365
deleting records from a Web applica-

tion, 288
deleting records using DataGrids,

336
deleting records using DataLists, 352
design, 161
importing into MSDE, 178
inserting records from a Web applic-

ation, 275

725Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

namespaces and ADO.NET, 244
shopping cart application, 456
storing login credentials, 542
suitable for use with ASP.NET, 6
terminology, 162
updating from a Web application,

279
updating from modified DataSets,

414
updating using DataGrids, 329
Web Services interaction, 676

DataColumn element, DataTables
adding calculated values, 398
assigning default values, 394
auto incrementing and uniqueness,

397
creating programmatically, 385
setting properties programmatically,

393
shopping cart application, 469

DataField property, BoundColumns
control, 312

DataGrid control, 305–339
advantages over Repeater control,

306
binding a DataSet to, 386
binding event logs to, 521
binding to DataSets, 432
column controls, 317
Company Events Web Service, 679
customizing presentation, 310
directory listing example, 570
modifying quantities in, 478
page output caching, 439
paging functionality, 376, 378
restricting editability, 333
shared access to DataSets, 374
shopping cart application, 453, 457,

462
sorting columns in, 410, 412
styling DataGrids, 313
using templates, 333

DataItem() method, Repeater class, 264
DataKeyField property

DataGrid , 330, 478, 481
DataList, 349

DataList control, 339
advantages over Repeater control,

306
binding database items to, 468
customizing using styles, 344
editing items within a DataList, 346
navigation menus using, 354
shopping cart application, 453, 457,

461
DataMember property

DataGrid control, 374
DataMember property, DataGrid, 372–

373
DataReader classes

database connection and, 245
DataReader control

binding to a DataGrid, 307
DataSets as alternatives, 363, 367

DataRelation class, 402
DataRow element, DataTables

adding items to a shopping cart, 470
creating programmatically, 387

DataSet object, ADO.NET, 363–379
binding from within code, 368
binding to a DataGrid, 386
binding using application variables,

424
DataTable information display, 382
elements, 367
as memory-resident virtual data-

bases, 365
performance enhancement with ap-

plication state, 430
selectCompanyEvents.asmx, 678
selecting DataTables, 372
shared access, 374
updating databases from, 414

Datasheet View, Access, 178, 207

Order the print version of this book to get all 700+ pages!726

Index

http://www.sitepoint.com/launch/eed6c1

DataTable object, 379–407
binding to a DataGrid, 473
creating programmatically, 380
DataRelations between, 402
looping through, 482
modifying, to update the database,

416
not derived from the database, 379
populating, using DataRows, 387
setting properties programmatically,

390
DataTextField property, DataGrid

control, 319
DataView object, 407

filtering, 408
filtering navigation, 638
page data caching, 445
sorting column data, 444

date and time functions, 27, 227
date information

date format validation, 141
multidimensional string arrays, 618

DATE() and DATEADD() functions,
228

DATEPART() function, 230
DateTime class, 27
DayNameFormat property, Calendar

control, 613
DayRender event, Calendar control,

617
DBMS (Database Management Sys-

tems), 163
DCOM (Distributed Component Ob-

ject Model), 649
debug mode, Web.config file setting,

503
Debugger, 522–530

attaching a process, 523
breakpoint creation, 525

Decimal.Round() method, 477
default page configuration, 16

Default.aspx page
custom authentication tickets, 554
Forms Authentication, 536

DefaultValue property, DataColumn
element, 394

DefaultView property, DataTable class,
407

delete anomalies, 167
delete operations

modified DataSets, 415
using DataGrids, 336
using DataLists, 352

DELETE statement, SQL, 220
deleting records from a Web applica-

tion, 288
Delete() method

DataRow class, 485
DataTable class, 417

<deny> element, Web.config file, 538
Departments table, Dorknozzle data-

base, 180
Access query using, 200
creating, 175
INNER JOIN involving, 236
primary key illustration, 184
relationship with Employees table,

167, 186, 191
table structure, 167
updating from a DataSet, 415

DeptLookup table, Dorknozzle data-
base, 192

Deserialize() method, BinaryFormatter
class, 594

Design View, Access, 170, 178
generating a query, 199

Dim keyword, 55
directives, 33, 43–44

(see also server-side include directives)
Import directive, 70
OutputCache directive, 439
Register directive, 626, 629–630,

632

727Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

WebService directive, 654
directories

accessing, 568
working with directory paths, 573

directory browsing, 16
Directory class

GetFiles() and other methods, 572
Directory Listing Denied message, 16
disconnected data model, 364
Display property

validation controls, 148, 151
DisplayName() method

user controls, 635
DISTINCT keyword, SQL, 209
distributed computing

Web Services and, 648
<div> tag

Panel control and, 106
Do loops, 66
Do While loops, 68
document wide styles, 115
DocumentSource property, XML con-

trol, 605
dog analogy, OOP, 73
doGoogleSearch() method, 671

Google Search Service example, 672
doQuery() function

Google Search Service example, 671
Dorknozzle database

(see also individual tables)
creating tables, 170, 172
creating using Access, 165
creating using Web Data Adminis-

trator, 165
DataRelations example, 403
defining primary keys, 185
formatted data from, using DataG-

rids, 310
relationships, 193
sorting column data, 412
update functionality using DataLists,

349

Dorknozzle Intranet Application
admin tools page, 280, 638
Company Events page, 676, 678
company newsletter page, 580, 582
defining as a Web application, 542
designing the Helpdesk application

form, 127
employee directory, 267
forms upload functionality, 577
functionality, 119
introduced, 119
navigation menu, 120
shopping cart application, 452
user controls, 626
using CompareValidator, 143
using RangeValidator, 146
using RequiredFieldValidator, 136
using ValidationSummary, 152

dot operator, 75
downlevel setting, ClientTarget attrib-

ute, 134
drop-down menus

binding data sources, 272
HtmlSelect control, 92
IsPostBack use, 112, 114

DropDownList control, 105, 705
admintools.aspx page, 281
binding DataViews to, 409
class for, Dorknozzle project, 126
directory listing example, 569

duplicate data
avoiding, with relationships, 186
DISTINCT keyword and, 209

dynamic display
validation controls, 148

E
eBay, 486
ecommerce sites

master/detail pages, 317
EditButtonColumn control, 346

Order the print version of this book to get all 700+ pages!728

Index

http://www.sitepoint.com/launch/eed6c1

EditCommand event, DataList control,
346–347

EditCommandColumn control, DataG-
rid, 317, 324, 465, 478

EditItemIndex property
DataGrid control, 328, 479

<EditItemTemplate> tag, 334, 347,
465

email
configuring IIS for, 580
creating the interface, 582
rendering HTML in, 586
sending from ASP.NET, 579

email address validation
using CustomValidator, 159
using regular expressions, 153, 156

email programs
appointment schedulers, 616
serialization and deserialization, 588

Employees table, Dorknozzle database,
180

Access query using, 200
column and data types, 169
creating, 173
INNER JOIN involving, 236
login credentials within, 542
primary and foreign key illustration,

184
relationship with Departments table,

167, 186, 191
table structure, 163

EmployeeStore table, Dorknozzle
database, 181

basic SQL query against, 198, 205
changing data, 218
creating, 176
inserting data, 214
removing records, 220
shopping cart application, 452, 456

empty methods in development and
testing, 467

EnableClientScript property, 134

EnableViewState property, Page direct-
ive, 43

enctype property, <form> tag, 577
entities, deriving database tables from,

168
environment variables

Path, 658
equality operator, C#, 64
error handling, 497, 506

.NET Debugger, 522
exceptions, 511
intuitive error information, 504
logging errors, 515
reading from error logs, 520
types of error, 498
viewing error information, 503

error messages
custom error messages, 548
display position, 137
‘friendly’ error pages, 506
message box display, 151

ErrorMessage property
RangeValidator control, 147
RequiredFieldValidator control, 136–

137
validation controls, 135

event bubbling, 323, 346
event handlers

(see also Page_Load() method)
Application_Start() method, 428
data controls, 324
DataGrid control, 326
DataGrid paging, 378
Global.asax file, 428
HTML controls, 88
Web controls, 102

EventArgs parameter, 51
not used for DataGrid controls, 327

EventLog class, .NET, 515, 517
events

introduced, 47
OO programming concept, 78

729Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

page events, 52
example ASP.NET pages

AccessingDirectoryInfo/index.aspx,
569–571

AccessingPathInfo/index.aspx, 573–
574

AddingDataColumnValues.aspx, 399
addressbook.aspx, 307
addressbookDS.aspx, 369–374
admintools.aspx, 280–294, 579, 630
AdRotator.aspx, 611
AdRotatorControl/AdRotator.aspx,

610–611
AdvancedXMLControl/sample.aspx,

607–608
AdvancedXMLControl/titlesTrans-

formAll.aspx, 606
ApplicationState/ApplicationState.as-

px, 425–428
AppointmentScheduler/sample.aspx,

616–624
Arrays.aspx, 57–59
BoundColumns.aspx, 311
calculate.aspx, 660
Calculate/calculate.aspx, 660–661
CalendarControl/CalendarControl.as-

px, 614
CatchingExceptions.aspx, 511
ClickEvent.aspx, 49
CompareValidator1.aspx, 139, 141
CompareValidator2.aspx, 142
CompareValidator3.aspx, 142
CreatingDataColumnsProgrammatic-

ally.aspx, 385
CreatingDataRowsProgrammatic-

ally.aspx, 387–390
CreatingDataTablesProgrammatic-

ally.aspx, 380–384
CustomAuthenticationTicket/De-

fault.aspx, 554
CustomAuthenticationTicket/login.as-

px, 552–554

CustomValidator.aspx, 158
DataColumnPropertiesProgrammat-

ically.aspx, 395
DataGridDelete.aspx, 336–338
DataGridPaging.aspx, 378
DataGridTemplates.aspx, 334–335
DataGridWithStyles.aspx, 313–315
DataListWithStyles.aspx, 345
DataRelations.aspx, 403–406
DataTablePropertiesProgrammatic-

ally.aspx, 391–392
DataViewsFiltering.aspx, 408–409
DataViewsSorting.aspx, 411–414
deserialize.aspx, 592
EditDataList.aspx, 346–353
EditUpdateCancel.aspx, 325–332
employeedirectory.aspx, 267–272
employeestore.aspx, 452, 457, 459–

493
FirstPage.aspx, 24
Functions.aspx, 60
GoogleSearch/search.aspx, 668–675
HandlingErrorsEventLog.aspx, 516–

521
helpdesk.aspx, 128, 137–138, 143–

144, 147–152, 272–277, 301–
303, 523

hrupload.aspx, 577
index.aspx (Dorknozzle project), 679
index.aspx, (Dorknozzle project),

122
index.aspx, logout functionality, 550
index.aspx, web service example, 679
listing directories, 569
login.aspx, 536, 540, 542–544
MasterDetail.aspx, 317–322
nav.aspx, 356–359, 627
newsletterarchive.aspx, 582–583
PageDataCaching/CachedGrid.aspx,

442–445
PageEvents.aspx, 52–53

Order the print version of this book to get all 700+ pages!730

Index

http://www.sitepoint.com/launch/eed6c1

PageOutputCaching/CachedGrid.as-
px, 440

PageOutputCaching/CachedTime.as-
px, 439

PostBack.aspx, 112
queriesUsingParameters.aspx, 257–

258
RangeValidator.aspx, 145
RegularExpressionValidator.aspx,

154
repeaterControl.aspx, 262–265
RequiredFieldValidator.aspx, 132,

136
respondingToUserInteraction.aspx,

254–255
sample.aspx, without code, 82
search.aspx, 668
Serialization/deserialize.aspx, 592–

595
Serialization/serialize.aspx, 589–592
serialize.aspx, 592
SessionState/Global.aspx, 449
SessionState/SessionState.aspx, 447
SimpleDataGrid.aspx, 307–309
SimpleDataList.aspx, 340–341, 343
simpleDataReader.aspx, 252
SimpleForm.aspx, 94, 96–97
SimpleLogin/Default.aspx, 536
SimpleLogin/login.aspx, 534
SimpleXMLControl/sample.aspx,

605
SpecificExceptions.aspx, 513
template.aspx, location, 267
TextFileReadWrite/index.aspx, 561–

567
TryCatch.aspx, 507–510
UpdatingDatabaseUsingDataSet.as-

px, 415–418
UserControlsLoadingProgrammatic-

ally/sample.aspx, 640–642
UserControlsMethods/Collect-

Name.aspx, 634

UserControlsProperties/sample.aspx,
631–633

UsingGlobalASAX/Global.aspx, 430
UsingGlobalASAX/index.aspx, 431
ValidationSummary.aspx, 149
ViewState.aspx, 41
WebConfigAuthentication/login.as-

px, 540
example project (see Dorknozzle In-

tranet Application)
example user controls

nav.ascx, 627
UserControlsLoadingProgrammatic-

ally/nav.ascx, 638
UserControlsLoadingProgrammatic-

ally/navadmin.ascx, 636
UserControlsLoadingProgrammatic-

ally/sample.ascx, 641
UserControlsMethods/Display-

Name.ascx, 634
UserControlsProperties/datetime.as-

cx, 631
UserControlsProperties/sample.ascx,

632
example Web Services

calculate.asmx, 653
Calculate/calculate.asmx, 654–655
selectCompanyEvents.asmx, 677

example XSLT style sheets
titlesTransform.xsl, 600, 604
titlesTransformAll.xsl, 606

Exception class, .NET, 511
more specific exceptions, 513

ExecuteNonQuery() method, 277
ExecuteReader() method, Command

object, 249, 277
Expression Builder, Access, 229
expressions, SQL, 222
external stye sheets, 115

731Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

F
File class

AppendText() method, 564
CreateText() method, 562
MapPath() method, 565
OpenText() method, 565, 567

file extensions
IIS processing of Web requests and,

12
Notepad, preserving, 24
user controls, 626
Web Services, 653

file paths, 573
file permissions, setting for Access

databases, 279
file streams, 560
files

(see also text files)
uploading from Web applications,

576
Web applications, location, 12

FileStream class, serialization example,
590–591, 593

Fill() method, DataAdapter class, 380
filtering results

DataTable.Compute() method and,
399

DataViews and, 408
parameterized ADO.NET queries,

259
FindControl() method, DataGrid con-

trol, 482
FirstDayOfWeek property, Calendar

control, 613
Font property category, 117
fonts

changing using DataGrids, 314
<FooterTemplate> tag, 262
For Each loops, 69

iterating through an ArrayList, 594
iterating through DataTables, 482

iterating through error messages, 515
writing table contents to Label con-

trols, 405
For loops, 68
foreign keys, 183
<form> tag

enctype property, 577
HtmlForm control and, 88

form validation (see validation controls)
formatting data using DataGrids, 310
forms (see Web forms)
forms authentication, 532

compared with other modes, 532
configuring, 537
cookies as basis of, 532

forms authorization, 538
<forms> element, Web.config file, 537
FormsAuthentication class

Authenticate() method, 541, 546
custom authentication tickets, 551
RedirectFromLoginPage() method,

535, 546
SignOut() method, 551

FormsIdentity class, 556
‘friendly’ error pages, 506
FROM clause

required in SELECT queries, 204
FromName() method, Color class, 623
functions

declaring in VB.NET and C#, 59
distinguished from subroutines, 59

functions, SQL, 226
aggregate functions, 229
arithmetic functions, 233
string functions, 235
supported in Access, 229

G
GAC (Global Assembly Cache), 423
GetChildRows() method, DataRow

class, 406

Order the print version of this book to get all 700+ pages!732

Index

http://www.sitepoint.com/launch/eed6c1

getData() method, 256
getDate() method, 259
GetFileName() method, Path class, 575
GetFiles() method, Directory class, 572
GetItemTotal() function, 482, 486
global variables, 341
Global.asax file, 423, 428
globalizing content with user controls,

626
Google Search Service

consuming the service, 667
example Web Service, 646
interface, 668
registering, 665
Web application based on, 664

graphics, Dorknozzle project naviga-
tion, 122

GridLines attribute, DataGrid control,
315

GROUP BY clause, SQL, 230

H
HAVING clause, SQL, 231
<head> tag, code declaration block

location, 35, 49
code declaration block location, 35,

49
<HeaderTemplate> tag, 261
HeaderText property, BoundColumns

control, 312
headings, styling in DataGrids, 314
helpdesk request page, Dorknozzle

design, 127
using CompareValidator, 143
using RangeValidator, 146
using RequiredFieldValidator, 136
using ValidationSummary, 152

HelpDesk table, Dorknozzle database,
176

HelpDeskCategories table, Dorknozzle
database, 177, 181

HelpDeskStatus table, Dorknozzle
database, 177, 181

HelpDeskSubjects table, Dorknozzle
database, 177, 182

hidden form fields
view state and, 43

hidden form fields and view state, 40
hiding controls (see Visible property)
hit counter, 425
HTML

comments, server-side comments
and, 38

contrasted with XML, 598
formatting XML as, 602, 605
generating tables with the Repeater

control, 261
invalid, derived from Re-

sponse.Write(), 254
markup in ASP.NET pages, 39
rendering in emails, 586

HTML controls, 86
full list, 683–698
survey form example, 94

HTML forms
Web forms and, 97

HtmlAnchor control, 87, 683
HtmlButton control, 88, 95, 684
HtmlForm control, 88, 685
HtmlGeneric control, 89, 685
HtmlImage control, 89, 686
HtmlInputButton control, 90, 687
HtmlInputCheckBox control, 90, 688
HtmlInputFile control, 91, 577, 688

uploading files, 576
HtmlInputHidden control, 91, 689
HtmlInputImage control, 91, 690
HtmlInputRadioButton control, 92,

691
HtmlInputText control, 92, 95, 692
HtmlSelect control, 92, 95, 693
HtmlTable control, 93, 694
HtmlTableCell control, 93, 695

733Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

HtmlTableRow control, 93, 696
HtmlTextArea control, 94, 697
HTTP status codes and ‘friendly’ error

messages, 506
HttpCookie class, 553
HttpPostedFile class, 578
HyperLink control, 103, 108, 706

DataList navigation menu, 356
Dorknozzle project navigation, 121

HyperLinkColumn control, DataGrid,
317–319

hyperlinks
DataGrid columns acting as, 317
LinkButton and HyperLink controls,

103
page navigation and, 107
within DataGrids, 318

I
identity columns, MSDE, 173
If... Else statements, 65
IIS (Internet Information Services)

(see also Web applications)
ASP.NET requirement, 5
checking ASP.NET integration, 10
configuring, 9
configuring to send email, 580
creating a Web application, 422
enabling directory browsing, 16
installation, 6
stopping and starting, 13

Image control, 102, 707
ImageButton control, 103, 707
images

adding to navigation menus, 358
changing dynamically, 89

 tags and the HtmlImage con-
trol, 89

Import directive, 43, 70
IN operator, SQL, 240
incrementing counters, 69

inheritance
code-behind files, 83
OO programming concept, 79

inline code/expression render blocks,
36

inline styles, 115
INNER JOINs, 236
<input> tag

HtmlInput* controls and, 90
TextBox control and, 99

insert operations
data loss and transactions, 296
modified DataSets, 415

INSERT statement, SQL, 214
inserting records from a Web applic-

ation, 275
stored procedure for, 300

instance methods, 563
Instant Payment Notification (IPN),

495
instantiation of classes, 77
interface, shopping cart application,

457
Internet

interoperability and, 645
scalability and Web Services, 649

Internet Explorer versions and installa-
tion, 7

Internet Services Manager, 422
interoperability, 645
Intranet Project (see Dorknozzle In-

tranet Application)
Invoke button, Web Service browser

tool, 656
ISAPI extension DLLs, 10
IsPostBack property, 112

shopping cart application, 469
Item() method, DataReader class, 250
<ItemStyle> tag

DataGrid control, 313
ItemTemplate class, 263

Order the print version of this book to get all 700+ pages!734

Index

http://www.sitepoint.com/launch/eed6c1

<ItemTemplate> tag, 262
Repeater control subtag, 261
use with DataLists, 343

J
JavaScript and client-side validation,

133
joins, 236–240

K
Kazaa, 13
keys (see foreign keys) (see primary keys)

L
Label control, 101, 708

as a built-in tag, 25
Calandar control example, 614
custom error messages and, 548
displaying authentication informa-

tion, 556
reading from text files, 566
retrieving path information, 573
running total display, 399, 477
writing table contents to, 405

language attribute, <script> tag and
Page directive, 35

languages (see programming languages)
LIKE keyword, 212
line continuation symbols, 65
<link> element

Dorknozzle project styling, 127
external style sheet use, 116

LinkButton control, 103, 708
DataLists, 346, 348, 352
Google Search Service example, 669
logging users out, 550
shopping cart application, 458, 465,

484, 489
shopping cart checkout, 487
Visible property, 674

Linux, 5

list boxes and the HtmlSelect control,
92

List property category, 117
ListBox control, 105, 709

deleting records from a Web applica-
tion, 288

Literal control, 710
literal text in ASP.NET pages, 39
LoadControl() method, 641
localhost, 13

IIS for email, 581
login credentials

database storage, 542
storage in Web.config, 540

login pages
example, 533
HtmlInputText control use, 92
logging users out, 550

LoginUser() method, example login
page, 534, 545, 548

look-up tables, 192
loopback IP address, 13
loops, 66–70

(see alsoDo loops; For Each loops)
exiting, 69

M
Machine.config file, 433
MailMessage class

introduced, 579
newsletterarchive.aspx, 586
properties, 579

many-to-many relationships, 191
MapPath() method, 565, 594
master/detail forms, 316
MAX function, SQL, 233
MaximumValue property, RangeValid-

ator control, 147
memory requirement, DataSets, 367
message boxes, error messages, 151

735Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

methods
OO programming concept, 73, 75
shared/static methods, 563
user controls, 633
Web Methods, 650

Microsoft Corporation
(see also.NET; Access databases; ASP;

Internet Explorer; MSDE; SQL
Server databases)

disconnected data model, 364
Web application definition, 422

MIN function, SQL, 233
MinimumCapacity property, DataTable

object, 391
MinimumValue property, RangeValid-

ator control, 147
MSDE

(see also Web Data Administrator)
character matching, 226
importing databases, 178
installing, 19
namespaces for ADO.NET use, 244
security, 196
suitability for ASP.NET, 6

music catalog
illustrating the Xml control, 603
illustrating XSLT, 600

N
namespaces, 70

(see also System.*)
importing into ASP.NET, 246
required for ADO.NET use, 244

navigation menus
Dorknozzle Intranet Application,

120
inappropriate for login pages, 543
selective display using user controls,

638
selective loading, 636
styling, 359

user control example, 625, 629
using DataLists, 354

navigation objects, 108
.NET Framework

(see also Debugger)
.NET assemblies, 658
class library, 27
classes for serialization and deserial-

ization, 589
Exception class, 511
rich controls, 597
user controls, 625

.NET Framework Redistributable
ASP.NET requirement, 6
installing, 8

.NET platform, significance, 1
NewRow() method, DataTable class,

389, 417, 473
newsletter page, Dorknozzle project,

582
Newsletters table, Dorknozzle database,

177
NextPrevFormat property, Calendar

control, 613
normalization, 169
Notepad, preserving file extensions, 24
number conversion to strings, 63

O
Object parameter, 51
objects as an OO programming concept,

73
OLE DB Provider for Access, 247
OleDbCommandBuilder class, 417
OleDbConnection class

Open() method, 76
OleDbException class, 513
OnClick event handler

Button control, 50
Button control attribute, 544
logging errors, 517

Order the print version of this book to get all 700+ pages!736

Index

http://www.sitepoint.com/launch/eed6c1

Web controls and, 102
OnDataBinding attribute, Button con-

trol, 50
one-to-many relationships, 188
one-to-one relationships, 187
OnServerClick event handler, 88, 577
OnSortCommand property, DataGrid

control, 412
OOP (Object Oriented Programming),

72
Open() method

Connection object, 250
OleDbConnection class, 76

OpenText() method, File class, 565,
567

operating systems, ASP.NET restric-
tions, 5

Operator property, CompareValidator
control, 142–143

operators
&= operator, 567
+= operator, 567
C# and VB.NET, tabulated, 63
dot operator, 75
SQL IN operator, 240
SQL queries using, 212
SQL, tabulated, 224

ORDER BY clause, SQL, 220
order processing, shopping carts, 486
OUTER JOINs, 238
OutputCache directive, 439

P
Page class and code-behind files, 81
page data caching, 442–446

example, 444
Page directive

disabling client-side validation, 134
EnableViewState property, 43
function of, 43
language attribute, 35

pages referring to code-behind files,
82

page events, 52
page hit counter, 425
page navigation, 107
page output caching, 438
page structure, ASP.NET, 32–40
Page_Init() method, 52
Page_Load() method, 52

appointment scheduler example, 618
DataTables, 382
handling updates, 293
IsPostBack use, 112

Page_PreRender() method, 52
Page_Unload() method, 52
PageSize property, DataGrid control,

377–378
paging

DataGrids, 306, 376
Google Search Service example, 669,

675
Panel control, 106, 710

Google Search Service example, 669
shopping cart application, 458, 461,

463
parameters

ADO.NET queries, 257
functions, 62
subroutines, 51

parser errors, 499
Passport authentication, 532, 646, 648
passwords

confirming entry of, 140
database storage, 542
HtmlInputText control use, 92
protecting an Access database, 195
storing within Web.config, 540
TextMode property and entering,

534
Path class, System.IO, 573

GetFileName() and other methods,
575

737Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

Path environment variable, 658
pattern matching with LIKE, 212

(see also regular expressions)
payment systems, 486
PayPal

account profile page, 496
Instant Payment Notification fea-

ture, 495
shopping cart integration with, 486
variables and values accepted, 488
Web Service potential, 646

performance enhancement
caching Web applications, 437
DataSets, with application state, 430
using stored procedures, 298

permissions (see file permissions)
persisting information

application state and, 426
between pages, methods for, 109
using query strings, 323
view state and, 40

phone number validation using RegEx-
ps, 156

PlaceHolder control, 107, 640, 642,
710

Positioning property category, 117
postback, 112

updates using, 292
postback checking, 112

shopping cart application, 469
PostedFile property, HttpPostedFile

class, 578
primary keys, 183

creating programmatically, 392
defining, 184
look-up tables, 192

PrimaryKey property, DataTable object,
391

processes, attaching to the Debugger,
523

programming languages
alternatives for ASP.NET, 44
specifying in Page directives, 34
supported within .NET, 2, 4
VB.NET and C# basics, 47

properties
OO programming concept, 74

properties, in OO programming, 73
proxy classes

compiling into assemblies, 658, 660,
665, 679

consuming Web Services, 658
generating, 659, 665, 678

public methods, user controls, 634
PWS (Personal Web Server), 5

Q
queries

copying, using SQL View, 202
filtering search results, 211
introduced, 195
ranges of values, 214
SQL clauses for refining, 220
subqueries, 240
using ADO.NET, 253
using parameters with ADO.NET,

257
using SQL, 197

Query Editor, Access, 199
Query Editor, Web Data Administrator,

203
query strings

DataGrid-based master/detail pages,
319

passing information with Re-
sponse.Redirect(), 109

question mark symbol, 534, 539
QuickWatch window, 529

R
radio buttons, creating, 92

Order the print version of this book to get all 700+ pages!738

Index

http://www.sitepoint.com/launch/eed6c1

RadioButton control, 103, 710
RadioButtonList control, 104, 711
RangeValidator control, 145, 717
Read() method, DataReader class, 250
ReadLine() method, StreamReader

class, 565, 567
ReadOnly property

BoundColumn control, 334
DataTable object, 465

RedirectFromLoginPage() method,
FormsAuthentication class, 535,
546

redirection with HyperLink controls,
108

referential integrity, 189
refreshLog() method, error logging ex-

ample, 520
Register directive

function of, 44
user controls, 626, 629–630, 632

registry editing, 22
regular expressions, 155
RegularExpressionValidator control,

153, 719
relational database model, 161
relationship diagrams, 194
Relationship Editor, Access, 189
relationships between tables

Dorknozzle database, 167, 193
managing, 185
relationship diagrams, 186, 191
types of relationship, 187

Remove() method
Application object, 424

Repeater control, 260
DataList compared to, 344
employeedirectory.aspx, 271
limitations, 305

Request.Form() method, 41

required form fields (see validation
controls)

RequiredFieldValidator control, 135,
334, 715

Response.Redirect() method, 109, 493
Response.Write() method

invalid HTML from, 254
legitimate use, 250
Repeater control alternative, 260

result sets, accessing, 263
return type, functions, 62
rich controls, 597

the AdRotator control, 609
the Calendar control, 611
the Xml control, 603

rolling back transactions, 296
RowFilter property, DataView class,

408
Rows() collection, DataTable class, 417
RPC (Remote Procedure Call), 649
runat="server" attribute

HTML controls distinguished by, 86
introduced, 25–26
script tag, 35
server controls and, 37

running totals
displaying, 399, 476

runtime errors, 501
debug mode and, 503

S
sample ASP.NET pages (see example

ASP.NET pages)
Save_Click() method

appointment scheduler example, 624
Save_Click() method, appointment

scheduler, 620
SaveAs() method, HttpPostedFile class,

579
scalability and Web Services, 649

739Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

scope
methods and properties, 78
subroutines, 51

<script> tag
attributes, 35
code elements located between, 32,

34
FirstPage.aspx use, 26

SDK (Software Development Kit)
(see also Debugger)
installing for .NET, 9
wsdl.exe utility, 658

security
Access and MSDE, 195
directory browsing and, 16
logging users out, 550
securing Web applications, 531
server-side validation and, 134

SecurityException, registering event log
source, 519

Select Case statements
directory listing example, 570

SELECT statements
embedded SELECTs, 241
significance in SQL, 204
specifying fields, 208
WHERE clause, 211

<select> tag
DropDownList and ListBox controls,

105
HtmlSelect control, 92

SelectCommand property
DataAdapter class, 372

SelectedDate property, Calendar con-
trol, 613, 621

SelectionChanged event handler, Calen-
dar control, 614

SelectionChanged event, Calendar
control, 617

SelectionMode property, Calendar
control, 613

SelectMonthText property, Calendar
control, 613

SelectWeekText property, Calendar
control, 613

Send() method, SmtpMail class, 587
separating presentation and logic

facilitated by ASP.NET, 4
server controls and, 37
using code-behind files, 79

<SeparatorTemplate> tag, 262
use with DataLists, 342

serialization, 588
Serialize() method, BinaryFormatter

object, 591, 621
server controls, 37
server-side include directives, 39

navigation menus and, 354
user controls and, 631

Server.Execute() method, 109
Server.Transfer() method, 109
Server.UrlEncode() method, 110
servers

ASP.NET as a server-side techno-
logy, 3

names, MSDE connection, 22, 247
Service Manager Dialog, MSDE, 21
session state and application state, 424
session variables, 446, 671, 675
shared methods, VB.NET, 563, 568
shopping cart application, 451

add to cart functionality, 470
checkout operation, 486
database, 456
interface controls, 457
interface HTML, 459
keeping the order total, 476
methods, 458
modifying cart quantities, 478
removing items from the cart, 484

shopping carts
calculated DataColumn values, 398
DataTable usefulness, 379

Order the print version of this book to get all 700+ pages!740

Index

http://www.sitepoint.com/launch/eed6c1

DefaultValue property and, 394
ShowDayHeader property, Calendar

control, 613
ShowGridLines property, Calendar

control, 613
ShowMessageBox property, Validation-

Summary control, 151
ShowNextPrevMonth property, Calen-

dar control, 613
ShowTitle property, Calendar control,

613
SignOut() method, FormsAuthentica-

tion class, 551
SMTP (Simple Mail Transfer Protocol),

580
SmtpMail class, 579
SmtpServer property, SmtpMail class,

587
SOAP (Simple Object Access Protocol),

650
Social Security Number validation, 157
sorting data

DataGrid capability, 306
DataGrid columns, 410
ORDER BY clauses, 220
page data caching example, 442

spacing, validation control effects, 148
 tag, 28
special characters in regular expressions,

155
spoofing, 550
SQL (Structured Query Language), 197

DELETE statements, 220
expressions, 222
functions, 226
INSERT statements, 214
operators, 224
overheads of executing, 298
SELECT statements, 204
subqueries, 240
UPDATE statements, 217

SQL Server databases
data types, 173
MSDE and, 19

SQL Server Desktop Engine (see
MSDE)

SQL View feature, Access, 202
src attribute, <script> tag, 36
standardization and Web Services,

649, 652
state, application and session, 423
static methods, C#, 563, 568
status codes, HTTP, and ‘friendly’ error

messages, 506
stepping through code, 525, 527
stored procedures, 194, 298–303
StreamReader class

Close() method, 567
ReadLine() method, 565, 567

StreamWriter class, System.IO, 562
WriteLine() method, 563

String class, reading from text files, 566
string concatenation

C# and VB.NET operators, 65
SQL & operator, 223

string conversions, 63
string functions, SQL, 235
StringBuilder class, 672

Append() method, 673
Google Search Service example, 672

strings, manipulating with regular ex-
pressions, 153

Structured Query Language (see SQL)
style attributes, 115–116
style properties, customizable, 117
style sheets

loading, using the Xml control, 603
presenting XML using XSLT, 600
selecting alternatives, 606

<style> tag, 115–116
styling DataGrids, 313
styling DataLists, 344

741Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

navigation menus, 359
styling Web pages, 115

Dorknozzle project, 124
subclasses, 79
submitting a form, 102
subqueries, SQL, 240
subroutines

distinguished from functions, 59
structure, 50

SUM function, SQL, 232
Switch and Switch Case statements, 66
switch statements, directory listing ex-

ample, 570
System.Data namespace

CommandType class, 302
System.Data.OleDb namespace, 70,

544
ADO.NET use with Access, 244
classes tabulated, 244
code example using, 72

System.Data.SqlClient namespace
ADO.NET use with MSDE, 244
classes tabulated, 245

System.Diagnostics namespace, 517
System.Drawing namespace, 617
System.IO namespace

classes for accessing directories, 568
groups of classes, 560
Path class, 573
working with files and directories,

559
System.Runtime.Serialization.Format-

ters.Binary namespace, 589, 617
System.Text namespace, 669
System.Web.Mail namespace, 579
System.Web.Security namespace

authentication classes, 533
FormsIdentity class, 556

System.Web.Services namespace, 654
System.Web.UI.HtmlControls

namespace, 86

System.Web.UI.WebControls
namespace, 75

T
table joins, 236–240
<table> tag and Html controls, 93
tables, database

creating using Access, 170
creating using Web Data Adminis-

trator, 172
designing, for the Dorknozzle data-

base, 166
structure of, 162

tables, HTML
Dorknozzle navigation layout, 122
generating with the Repeater control,

261
tabular structure of DataGrids, 306

tables, virtual (see table joins)
tag redefinition, 116
tags, child tags and subtags, 261
<template> tag, XSLT, 602
template.aspx page, location, 267
TemplateColumn control

DataGrid control, 334
TemplateColumn control, DataGrid,

317
templates

Repeater control use, 261
required for DataList controls, 339
using with DataGrids, 333

text boxes, passing query parameters,
257

text display
changing dynamically, 89
Label control and, 101

text files
ASCII standard format, 559
reading from, 565
writing to, 560

<textarea> tags, 94

Order the print version of this book to get all 700+ pages!742

Index

http://www.sitepoint.com/launch/eed6c1

TextBox control, 99, 101, 712
admintools.aspx page, 281
appointment schedular, 617
binding data to, 285
casting generic controls to, 331
class for, Dorknozzle project, 126
DataGrid edit functionality, 328
editing within DataLists, 351
email interface example, 583
password TextMode, 534
user text input, 562

TextMode property, TextBox control,
534

Timeout property, Session object, 448
TitleFormat property, Calendar control,

613
titlesTransform.xsl stylesheet, 600, 604
titlesTransformAll.xsl stylesheet, 606
TodaysDate property, Calendar control,

613
ToString() method, 63
transactions, 295
TransformSource property, XML con-

trol, 605, 608
Try...Catch blocks

error handling using, 509
exception handling, 511
Try-Catch-Finally statements and

transactions, 297
type conversion, 56
Type property, RangeValidator control,

146

U
UDDI (Universal Description, Discov-

ery, and Integration)
basis in XML, 650
directories, 664
role, 651

underscore line continuation symbol,
65

unique data and the DISTINCT
keyword, 209

unique identifiers
(see also primary keys)
DataLists, 349
setting within DataGrids, 330

Unique property, DataColumn element,
397

update anomalies, 166
update operations

data loss and transactions, 296
global, with user controls, 626
modified DataSets, 414–415
shopping cart DataGrid, 480
using DataGrid controls, 329

UPDATE statement, SQL, 217
inserting records from a Web applic-

ation, 279
Update() method, DataAdapter class,

414
uplevel setting, ClientTarget attribute,

134
uploading files, 576
URLs (Uniform Resource Locators)

generating dynamically, 457, 491
validation using RegExps, 157

usability and postback, 292
user controls, 625

datetime.ascx, 632
dynamic possibilities of, 630
loading programmatically, 636
nav.ascx, 627
properties and methods, 630
server-side includes and, 39, 631
UserControlsLoadingProgrammatic-

ally/nav.ascx, 638
UserControlsLoadingProgrammatic-

ally/navadmin.ascx, 636
UserControlsLoadingProgrammatic-

ally/sample.ascx, 641
UserControlsMethods/Display-

Name.ascx, 634

743Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

UserControlsProperties/datetime.as-
cx, 631

UserControlsProperties/sample.ascx,
632

user interaction, responding to, 254
user names

database storage, 542
storing within Web.config, 540

user sessions, 446

V
validation

always performed server-side, 134
client-side and server-side, 131
disabling client-side, 134

validation controls, 131, 135
adding to DataGrids with templates,

333
effect on page layout, 148
full list, 715–720

validation of logins (see authentication)
ValidationExpression property, Regu-

larExpressionValidator, 154
ValidationSummary control, 149, 718
<value-of> tag, XSLT, 602
variable declarations, 55

arrays, 58
variables, 54

accepted by PayPal, 488
application variables, 424
Boolean, 475
incrementing counters, 69
initialization, 55
session variables, 446, 671, 675
usefulness of global variables, 341
viewing values in Debugger, 529

VB.NET
compared to Visual Basic, 44
data types, 56
FirstPage.aspx example in, 25
operators, 64

VBScript, VB.NET as successor to, 44
video library XML illustration, 599
View Source feature, IE, 28
view state, 40
ViewDriveInfo() method, directory

listing example, 570
views, editing tables (see Access data-

bases)
virtual directories, 14

configuring with the IIS console, 16
introduced, 13

Virtual Directory Creation Wizard, 15
virtual server-side includes, 39
virtual shopping carts (see shopping cart

applications)
Visible property, LinkButton control,

674
Visible property, Panel control, 484

shopping cart application, 469, 471
VisibleDate property, Calendar control,

614
Visual Basic

VB.NET compared to, 44
Visual Basic.NET (see VB.NET)

W
watches, creating when debugging, 529
Web applications

authentication and, 536
caching, 437
consuming a Web Service, 658
defined, 422
defining the Dorknozzle project as,

542
file locations, 12
linking to databases, 246
security, 531
stored procedures and performance,

299
Web controls, 98–99

applying CSS classes, 118, 128

Order the print version of this book to get all 700+ pages!744

Index

http://www.sitepoint.com/launch/eed6c1

basic Web controls, 100
data binding, 272
data display in response to, 254
formatting with CSS, 114
full list, 699–713
refreshing after database updates,

293
Web Data Administrator

Access data modelling and, 18
creating stored procedures, 299
creating tables, 172
creating the Dorknozzle database,

165
defining primary keys, 185
example database listing, 164
INSERT statements, 216
installing, 22
Query Editor, 203
UPDATE statements, 218
usefulness, 6

Web forms, 97
ASP.NET meaning, 98
Helpdesk request form, Dorknozzle,

127
master/detail forms, 316
survey form example, 94

Web Methods, 650
Web Service browser tool, 656, 663
Web Services

(see also example Web Services)
applications consuming, 658
browser display, 655
calculator example, 653
consuming the Company Events

service, 679
consuming third-party, 663
database access, 676
directories, 664
interoperability and, 645
locating a suitable service, 664
standards, 649, 652

Web.config file, 433

authentication information stored
in, 540

configuration errors and, 498
configuring Forms authentication,

537
configuring Forms authorization,

538
error information settings, 503
example, 436
introduced, 423
setting authentication modes, 533

WebControl class, 699, 715
<WebMethod ()> / [WebMethod] tag,

655
WebUIValidation.js file, aspnet_client

folder, 133
WHERE clauses

embedded SELECTs, 241
HAVING compared to, 231
operators for, 225
RowFilter property resembles, 408
SELECT statements, 211
UPDATE statements, 280

While loops, 66
data display, 250
reading from text files, 565, 567

wildcard characters, 226
SQL queries, 212

Windows authentication, 532
Windows Explorer and ASP.NET pages,

13
worker process, ASP.NET, 523
write permissions, enabling, 561
WriteEntry() method, error logging ex-

ample, 518
WriteLine() method, StreamWriter

class, 563
WriteText() method, 562
WSDL (Web Service Definition Lan-

guage)
basis in XML, 650
browser tool view, 663

745Order the print version of this book to get all 700+ pages!

http://www.sitepoint.com/launch/eed6c1

consuming third-party Web Services,
663

role, 650
wsdl.exe utility, 658, 665, 678

X
XML

(see also Web Services)
AdRotator advertisement files as,

610
appearance in a browser, 600
further information on, 603
Web Services results format, 657
Web Services standards and, 650
XSLT and, introduced, 598

Xml control, 603, 713
XML markup and configuration errors,

498
<xsl: (see following term)
XSLT (Extensible Stylesheet Language

for Transformations), 600
titlesTransform.xsl, 600
titlesTransformAll.xsl, 606

Z
zero-based arrays, 58
ZIP code validation, 156

Order the print version of this book to get all 700+ pages!746

Index

http://www.sitepoint.com/launch/eed6c1

What’s Next?
If you’ve enjoyed these chapters from Build Your Own ASP.NET
Website Using C# & VB.NET, why not order yourself a copy?

In the rest of the book, you’ll learn how to put ASP.NET to full
use in a number of practical solutions. In particular, you’ll
discover how to use databases in conjunction with ASP.NET to
create dynamic Websites. And because instructions are provided
for Microsoft Access, SQL Server, and even Microsoft’s free
database, MSDE, you can work through the book no matter what
database software you have.

You’ll also gain access to the code archive download, so you can
try out all the examples without retyping. Just like in the book, all
examples in the code archive are offered in C# and VB.NET
varieties.

Here are just a few of the things you’ll learn to do:

 validate form input automatically

 set up a relational database for your dynamic Website

 create a database-driven employee directory

 design a slick Web interface to update the database

 build an online store, complete with shopping cart and
credit card processing

 control access to your site with a database of users

 consume and build your own XML Web Services

 And a whole lot more…

Order Now and Get it Delivered to your Doorstep!

https://sitepoint.com/bookstore/go/8/eed6c1/

	Build Your Own ASP.NET Website Using C# & VB.NET
	Table of Contents
	Preface
	Who Should Read This Book?
	What’s Covered In This Book?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Introduction to .NET and ASP.NET
	What is .NET?
	What is ASP.NET?
	What Do I Need?
	Installing the Required Software
	Installing Internet Information Services (IIS)
	Installing Internet Explorer
	Installing the .NET Framework and SDK
	Download and Install the Redistributable
	Download and Install the SDK

	Configuring IIS
	Determining whether ASP.NET Installed Correctly
	Where Do I Put My Files?
	Using Localhost
	Stopping and Starting IIS
	Virtual Directories

	Installing Microsoft Access
	Installing SQL Server Desktop Engine (MSDE)
	Installing and Configuring Web Data Administrator

	Your First ASP.NET Page
	The ASP.NET Support Site
	Summary

	ASP.NET Basics
	ASP.NET Page Structure
	Directives
	Code Declaration Blocks
	Code Render Blocks
	ASP.NET Server Controls
	Server-Side Comments
	Server-Side Include Directives
	Literal Text and HTML Tags

	View State
	Working With Directives
	ASP.NET Languages
	VB.NET
	C#

	 Summary

	VB.NET and C# Programming Basics
	Programming Basics
	Control Events and Subroutines
	Page Events
	Variables and Variable Declaration
	Arrays
	Functions
	Operators
	Conditional Logic
	Loops

	Understanding Namespaces
	Object Oriented Programming Concepts
	Objects
	Properties
	Methods
	Classes
	Scope
	Events
	Understanding Inheritance

	Separating Code From Content With Code-Behind
	Summary

	Web Forms and Web Controls
	Working with HTML Controls
	HtmlAnchor
	HtmlButton
	HtmlForm
	HtmlImage
	HtmlGenericControl
	HtmlInputButton
	HtmlInputCheckBox
	HtmlInputFile
	HtmlInputHidden
	HtmlInputImage
	HtmlInputRadioButton
	HtmlInputText
	HtmlSelect
	HtmlTable, HtmlTableRow and HtmlTableCell
	HtmlTextArea

	Processing a Simple Form
	Introduction to Web Forms
	Introduction to Web Controls
	Basic Web Controls
	Label
	TextBox
	Button
	Image
	ImageButton
	LinkButton
	HyperLink
	RadioButton
	RadioButtonList
	CheckBox
	CheckBoxList
	DropDownList
	ListBox
	Panel
	PlaceHolder

	Handling Page Navigation
	Using The HyperLink Control
	Navigation Objects And Their Methods

	Postback
	Formatting Controls with CSS
	Types of Styles and Style Sheets
	Style Properties
	The CssClass Property

	A Navigation Menu and Web Form for the Intranet Application
	Introducing the Dorknozzle Intranet Application
	Building the Navigation Menu
	Create the Corporate Style Sheet
	Design the Web Form for the Helpdesk Application

	Summary

	Index
	What’s Next?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

